Design and research of RFID microstrip antenna based on improved PSO neural networks
There are some key parameters in RFID reader antenna which are related closely with the antenna structure, such as resonant frequency, return loss and bandwidth in the antenna design process. Structure and properties of the antenna is a complex nonlinear system with complex state which is difficult...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 254 |
---|---|
container_issue | |
container_start_page | 251 |
container_title | |
container_volume | |
creator | Guo Zhitao Yuan Jinli Gu Junhua |
description | There are some key parameters in RFID reader antenna which are related closely with the antenna structure, such as resonant frequency, return loss and bandwidth in the antenna design process. Structure and properties of the antenna is a complex nonlinear system with complex state which is difficult to make mode by the mathematic method. In this case, neural network is used to express the nonlinear system in this article. Giving a large number of simulation data for the samples, adaptive particle swarm algorithm is used to train network by simulation experiment which is used to verify the fitting degree of neural networks and simulation results. The experiment result shows that PSO neural network can improve the level of computer-aided design of micro strip antenna and achieve the antenna design quickly. |
doi_str_mv | 10.1109/ISAPE.2010.5696446 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5696446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5696446</ieee_id><sourcerecordid>5696446</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ca6f888bfd5910b8c6303f13f1759c58a177d75e8534256aaa38af8499c212f43</originalsourceid><addsrcrecordid>eNo1UNtKAzEUjIig1v0BfckPtOZ-eSy9aKHQYve9nN1NNNq9kKyKf2_AOgzMDAPzMAjdUzKjlNjHzWG-X80YyVkqq4RQF-iWCpaNJVpcosJq858Vu0ZFSu8kQzLNubhB5dKl8Nph6BocXXIQ6zfce_yy3ixxG-rYpzGGIfej6zrAFSTX4L7DoR1i_5X9_rDDnfuMcMoyfvfxI92hKw-n5IqzTlC5XpWL5-l297RZzLfTYMk4rUF5Y0zlG2kpqUytOOGeZmppa2mAat1o6YzkgkkFANyAN8LamlHmBZ-gh7_Z4Jw7DjG0EH-O5x_4L1YZUMI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Design and research of RFID microstrip antenna based on improved PSO neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Guo Zhitao ; Yuan Jinli ; Gu Junhua</creator><creatorcontrib>Guo Zhitao ; Yuan Jinli ; Gu Junhua</creatorcontrib><description>There are some key parameters in RFID reader antenna which are related closely with the antenna structure, such as resonant frequency, return loss and bandwidth in the antenna design process. Structure and properties of the antenna is a complex nonlinear system with complex state which is difficult to make mode by the mathematic method. In this case, neural network is used to express the nonlinear system in this article. Giving a large number of simulation data for the samples, adaptive particle swarm algorithm is used to train network by simulation experiment which is used to verify the fitting degree of neural networks and simulation results. The experiment result shows that PSO neural network can improve the level of computer-aided design of micro strip antenna and achieve the antenna design quickly.</description><identifier>ISBN: 9781424469062</identifier><identifier>ISBN: 1424469066</identifier><identifier>EISBN: 1424469074</identifier><identifier>EISBN: 9781424469079</identifier><identifier>EISBN: 1424469082</identifier><identifier>EISBN: 9781424469086</identifier><identifier>DOI: 10.1109/ISAPE.2010.5696446</identifier><language>eng</language><publisher>IEEE</publisher><subject>Micro strip antenna ; neural network ; PSO (Partial Swarm Optimization) ; resonant frequency</subject><ispartof>Proceedings of the 9th International Symposium on Antennas, Propagation and EM Theory, 2010, p.251-254</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5696446$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5696446$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guo Zhitao</creatorcontrib><creatorcontrib>Yuan Jinli</creatorcontrib><creatorcontrib>Gu Junhua</creatorcontrib><title>Design and research of RFID microstrip antenna based on improved PSO neural networks</title><title>Proceedings of the 9th International Symposium on Antennas, Propagation and EM Theory</title><addtitle>ISAPE</addtitle><description>There are some key parameters in RFID reader antenna which are related closely with the antenna structure, such as resonant frequency, return loss and bandwidth in the antenna design process. Structure and properties of the antenna is a complex nonlinear system with complex state which is difficult to make mode by the mathematic method. In this case, neural network is used to express the nonlinear system in this article. Giving a large number of simulation data for the samples, adaptive particle swarm algorithm is used to train network by simulation experiment which is used to verify the fitting degree of neural networks and simulation results. The experiment result shows that PSO neural network can improve the level of computer-aided design of micro strip antenna and achieve the antenna design quickly.</description><subject>Micro strip antenna</subject><subject>neural network</subject><subject>PSO (Partial Swarm Optimization)</subject><subject>resonant frequency</subject><isbn>9781424469062</isbn><isbn>1424469066</isbn><isbn>1424469074</isbn><isbn>9781424469079</isbn><isbn>1424469082</isbn><isbn>9781424469086</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UNtKAzEUjIig1v0BfckPtOZ-eSy9aKHQYve9nN1NNNq9kKyKf2_AOgzMDAPzMAjdUzKjlNjHzWG-X80YyVkqq4RQF-iWCpaNJVpcosJq858Vu0ZFSu8kQzLNubhB5dKl8Nph6BocXXIQ6zfce_yy3ixxG-rYpzGGIfej6zrAFSTX4L7DoR1i_5X9_rDDnfuMcMoyfvfxI92hKw-n5IqzTlC5XpWL5-l297RZzLfTYMk4rUF5Y0zlG2kpqUytOOGeZmppa2mAat1o6YzkgkkFANyAN8LamlHmBZ-gh7_Z4Jw7DjG0EH-O5x_4L1YZUMI</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Guo Zhitao</creator><creator>Yuan Jinli</creator><creator>Gu Junhua</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201011</creationdate><title>Design and research of RFID microstrip antenna based on improved PSO neural networks</title><author>Guo Zhitao ; Yuan Jinli ; Gu Junhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ca6f888bfd5910b8c6303f13f1759c58a177d75e8534256aaa38af8499c212f43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Micro strip antenna</topic><topic>neural network</topic><topic>PSO (Partial Swarm Optimization)</topic><topic>resonant frequency</topic><toplevel>online_resources</toplevel><creatorcontrib>Guo Zhitao</creatorcontrib><creatorcontrib>Yuan Jinli</creatorcontrib><creatorcontrib>Gu Junhua</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo Zhitao</au><au>Yuan Jinli</au><au>Gu Junhua</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Design and research of RFID microstrip antenna based on improved PSO neural networks</atitle><btitle>Proceedings of the 9th International Symposium on Antennas, Propagation and EM Theory</btitle><stitle>ISAPE</stitle><date>2010-11</date><risdate>2010</risdate><spage>251</spage><epage>254</epage><pages>251-254</pages><isbn>9781424469062</isbn><isbn>1424469066</isbn><eisbn>1424469074</eisbn><eisbn>9781424469079</eisbn><eisbn>1424469082</eisbn><eisbn>9781424469086</eisbn><abstract>There are some key parameters in RFID reader antenna which are related closely with the antenna structure, such as resonant frequency, return loss and bandwidth in the antenna design process. Structure and properties of the antenna is a complex nonlinear system with complex state which is difficult to make mode by the mathematic method. In this case, neural network is used to express the nonlinear system in this article. Giving a large number of simulation data for the samples, adaptive particle swarm algorithm is used to train network by simulation experiment which is used to verify the fitting degree of neural networks and simulation results. The experiment result shows that PSO neural network can improve the level of computer-aided design of micro strip antenna and achieve the antenna design quickly.</abstract><pub>IEEE</pub><doi>10.1109/ISAPE.2010.5696446</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424469062 |
ispartof | Proceedings of the 9th International Symposium on Antennas, Propagation and EM Theory, 2010, p.251-254 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5696446 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Micro strip antenna neural network PSO (Partial Swarm Optimization) resonant frequency |
title | Design and research of RFID microstrip antenna based on improved PSO neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Design%20and%20research%20of%20RFID%20microstrip%20antenna%20based%20on%20improved%20PSO%20neural%20networks&rft.btitle=Proceedings%20of%20the%209th%20International%20Symposium%20on%20Antennas,%20Propagation%20and%20EM%20Theory&rft.au=Guo%20Zhitao&rft.date=2010-11&rft.spage=251&rft.epage=254&rft.pages=251-254&rft.isbn=9781424469062&rft.isbn_list=1424469066&rft_id=info:doi/10.1109/ISAPE.2010.5696446&rft_dat=%3Cieee_6IE%3E5696446%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424469074&rft.eisbn_list=9781424469079&rft.eisbn_list=1424469082&rft.eisbn_list=9781424469086&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5696446&rfr_iscdi=true |