Design and research of RFID microstrip antenna based on improved PSO neural networks

There are some key parameters in RFID reader antenna which are related closely with the antenna structure, such as resonant frequency, return loss and bandwidth in the antenna design process. Structure and properties of the antenna is a complex nonlinear system with complex state which is difficult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Guo Zhitao, Yuan Jinli, Gu Junhua
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 254
container_issue
container_start_page 251
container_title
container_volume
creator Guo Zhitao
Yuan Jinli
Gu Junhua
description There are some key parameters in RFID reader antenna which are related closely with the antenna structure, such as resonant frequency, return loss and bandwidth in the antenna design process. Structure and properties of the antenna is a complex nonlinear system with complex state which is difficult to make mode by the mathematic method. In this case, neural network is used to express the nonlinear system in this article. Giving a large number of simulation data for the samples, adaptive particle swarm algorithm is used to train network by simulation experiment which is used to verify the fitting degree of neural networks and simulation results. The experiment result shows that PSO neural network can improve the level of computer-aided design of micro strip antenna and achieve the antenna design quickly.
doi_str_mv 10.1109/ISAPE.2010.5696446
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5696446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5696446</ieee_id><sourcerecordid>5696446</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ca6f888bfd5910b8c6303f13f1759c58a177d75e8534256aaa38af8499c212f43</originalsourceid><addsrcrecordid>eNo1UNtKAzEUjIig1v0BfckPtOZ-eSy9aKHQYve9nN1NNNq9kKyKf2_AOgzMDAPzMAjdUzKjlNjHzWG-X80YyVkqq4RQF-iWCpaNJVpcosJq858Vu0ZFSu8kQzLNubhB5dKl8Nph6BocXXIQ6zfce_yy3ixxG-rYpzGGIfej6zrAFSTX4L7DoR1i_5X9_rDDnfuMcMoyfvfxI92hKw-n5IqzTlC5XpWL5-l297RZzLfTYMk4rUF5Y0zlG2kpqUytOOGeZmppa2mAat1o6YzkgkkFANyAN8LamlHmBZ-gh7_Z4Jw7DjG0EH-O5x_4L1YZUMI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Design and research of RFID microstrip antenna based on improved PSO neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Guo Zhitao ; Yuan Jinli ; Gu Junhua</creator><creatorcontrib>Guo Zhitao ; Yuan Jinli ; Gu Junhua</creatorcontrib><description>There are some key parameters in RFID reader antenna which are related closely with the antenna structure, such as resonant frequency, return loss and bandwidth in the antenna design process. Structure and properties of the antenna is a complex nonlinear system with complex state which is difficult to make mode by the mathematic method. In this case, neural network is used to express the nonlinear system in this article. Giving a large number of simulation data for the samples, adaptive particle swarm algorithm is used to train network by simulation experiment which is used to verify the fitting degree of neural networks and simulation results. The experiment result shows that PSO neural network can improve the level of computer-aided design of micro strip antenna and achieve the antenna design quickly.</description><identifier>ISBN: 9781424469062</identifier><identifier>ISBN: 1424469066</identifier><identifier>EISBN: 1424469074</identifier><identifier>EISBN: 9781424469079</identifier><identifier>EISBN: 1424469082</identifier><identifier>EISBN: 9781424469086</identifier><identifier>DOI: 10.1109/ISAPE.2010.5696446</identifier><language>eng</language><publisher>IEEE</publisher><subject>Micro strip antenna ; neural network ; PSO (Partial Swarm Optimization) ; resonant frequency</subject><ispartof>Proceedings of the 9th International Symposium on Antennas, Propagation and EM Theory, 2010, p.251-254</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5696446$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5696446$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guo Zhitao</creatorcontrib><creatorcontrib>Yuan Jinli</creatorcontrib><creatorcontrib>Gu Junhua</creatorcontrib><title>Design and research of RFID microstrip antenna based on improved PSO neural networks</title><title>Proceedings of the 9th International Symposium on Antennas, Propagation and EM Theory</title><addtitle>ISAPE</addtitle><description>There are some key parameters in RFID reader antenna which are related closely with the antenna structure, such as resonant frequency, return loss and bandwidth in the antenna design process. Structure and properties of the antenna is a complex nonlinear system with complex state which is difficult to make mode by the mathematic method. In this case, neural network is used to express the nonlinear system in this article. Giving a large number of simulation data for the samples, adaptive particle swarm algorithm is used to train network by simulation experiment which is used to verify the fitting degree of neural networks and simulation results. The experiment result shows that PSO neural network can improve the level of computer-aided design of micro strip antenna and achieve the antenna design quickly.</description><subject>Micro strip antenna</subject><subject>neural network</subject><subject>PSO (Partial Swarm Optimization)</subject><subject>resonant frequency</subject><isbn>9781424469062</isbn><isbn>1424469066</isbn><isbn>1424469074</isbn><isbn>9781424469079</isbn><isbn>1424469082</isbn><isbn>9781424469086</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UNtKAzEUjIig1v0BfckPtOZ-eSy9aKHQYve9nN1NNNq9kKyKf2_AOgzMDAPzMAjdUzKjlNjHzWG-X80YyVkqq4RQF-iWCpaNJVpcosJq858Vu0ZFSu8kQzLNubhB5dKl8Nph6BocXXIQ6zfce_yy3ixxG-rYpzGGIfej6zrAFSTX4L7DoR1i_5X9_rDDnfuMcMoyfvfxI92hKw-n5IqzTlC5XpWL5-l297RZzLfTYMk4rUF5Y0zlG2kpqUytOOGeZmppa2mAat1o6YzkgkkFANyAN8LamlHmBZ-gh7_Z4Jw7DjG0EH-O5x_4L1YZUMI</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Guo Zhitao</creator><creator>Yuan Jinli</creator><creator>Gu Junhua</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201011</creationdate><title>Design and research of RFID microstrip antenna based on improved PSO neural networks</title><author>Guo Zhitao ; Yuan Jinli ; Gu Junhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ca6f888bfd5910b8c6303f13f1759c58a177d75e8534256aaa38af8499c212f43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Micro strip antenna</topic><topic>neural network</topic><topic>PSO (Partial Swarm Optimization)</topic><topic>resonant frequency</topic><toplevel>online_resources</toplevel><creatorcontrib>Guo Zhitao</creatorcontrib><creatorcontrib>Yuan Jinli</creatorcontrib><creatorcontrib>Gu Junhua</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo Zhitao</au><au>Yuan Jinli</au><au>Gu Junhua</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Design and research of RFID microstrip antenna based on improved PSO neural networks</atitle><btitle>Proceedings of the 9th International Symposium on Antennas, Propagation and EM Theory</btitle><stitle>ISAPE</stitle><date>2010-11</date><risdate>2010</risdate><spage>251</spage><epage>254</epage><pages>251-254</pages><isbn>9781424469062</isbn><isbn>1424469066</isbn><eisbn>1424469074</eisbn><eisbn>9781424469079</eisbn><eisbn>1424469082</eisbn><eisbn>9781424469086</eisbn><abstract>There are some key parameters in RFID reader antenna which are related closely with the antenna structure, such as resonant frequency, return loss and bandwidth in the antenna design process. Structure and properties of the antenna is a complex nonlinear system with complex state which is difficult to make mode by the mathematic method. In this case, neural network is used to express the nonlinear system in this article. Giving a large number of simulation data for the samples, adaptive particle swarm algorithm is used to train network by simulation experiment which is used to verify the fitting degree of neural networks and simulation results. The experiment result shows that PSO neural network can improve the level of computer-aided design of micro strip antenna and achieve the antenna design quickly.</abstract><pub>IEEE</pub><doi>10.1109/ISAPE.2010.5696446</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424469062
ispartof Proceedings of the 9th International Symposium on Antennas, Propagation and EM Theory, 2010, p.251-254
issn
language eng
recordid cdi_ieee_primary_5696446
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Micro strip antenna
neural network
PSO (Partial Swarm Optimization)
resonant frequency
title Design and research of RFID microstrip antenna based on improved PSO neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Design%20and%20research%20of%20RFID%20microstrip%20antenna%20based%20on%20improved%20PSO%20neural%20networks&rft.btitle=Proceedings%20of%20the%209th%20International%20Symposium%20on%20Antennas,%20Propagation%20and%20EM%20Theory&rft.au=Guo%20Zhitao&rft.date=2010-11&rft.spage=251&rft.epage=254&rft.pages=251-254&rft.isbn=9781424469062&rft.isbn_list=1424469066&rft_id=info:doi/10.1109/ISAPE.2010.5696446&rft_dat=%3Cieee_6IE%3E5696446%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424469074&rft.eisbn_list=9781424469079&rft.eisbn_list=1424469082&rft.eisbn_list=9781424469086&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5696446&rfr_iscdi=true