Video Human Motion Recognition Using Knowledge-Based Hybrid Method
Human motion recognition in video data has several interesting applications in fields such as gaming, senior/assisted living environments, and surveillance. In these scenarios, we might have to consider adding new motion classes (i.e. new types of human motions to be recognized) as well as new train...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | |
container_start_page | 65 |
container_title | |
container_volume | |
creator | Myunghoon Suk Ramadass, A Yohan Jin Prabhakaran, B |
description | Human motion recognition in video data has several interesting applications in fields such as gaming, senior/assisted living environments, and surveillance. In these scenarios, we might have to consider adding new motion classes (i.e. new types of human motions to be recognized) as well as new training data (say, for handling different type of subjects). Hence, both accuracy of classification and training time for the machine learning algorithms become important performance parameters in these cases. In this paper, we propose a Knowledge Based Hybrid (KBH) method that can compute the probabilities for Hidden Markov Models (HMMs) associated with different human motion classes. This computation is facilitated by appropriately mixing features from two different media types (3D motion capture and 2D video). We conducted a variety of experiments comparing the proposed KBH for HMMs and the traditional Baum-Welch algorithms. With the advantage of computing the HMMs parameters in a non-iterative manner, the KBH method outperforms the Baum-Welch algorithm both in terms of accuracy as well as reduced training time. |
doi_str_mv | 10.1109/ISM.2010.19 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5693824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5693824</ieee_id><sourcerecordid>5693824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c132t-6ecc2153f7b7f91930c548b7d617334dd23cf81c373a2acaa4f4530936e04df3</originalsourceid><addsrcrecordid>eNotjMtOwzAUBY0QErR0xZKNfyDF9vUjXtIKSEUjJChsK8e-DkZtjJIg1L_neTYzszmEXHA255zZq9VTPRfsp-wRmTCjrZKCG3lMJlwKKUtthD4ls2F4Y99TwkjQZ2TxkgJmWn3sXUfrPKbc0Uf0ue3Srz8PqWvpfZc_dxhaLBZuwECrQ9OnQGscX3M4JyfR7Qac_XNKNrc3m2VVrB_uVsvrdeE5iLHQ6L3gCqJpTLTcAvNKlo0JmhsAGYIAH0vuwYATzjsno1TALGhkMkSYksu_24SI2_c-7V1_2CptoRQSvgCyi0gk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Video Human Motion Recognition Using Knowledge-Based Hybrid Method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Myunghoon Suk ; Ramadass, A ; Yohan Jin ; Prabhakaran, B</creator><creatorcontrib>Myunghoon Suk ; Ramadass, A ; Yohan Jin ; Prabhakaran, B</creatorcontrib><description>Human motion recognition in video data has several interesting applications in fields such as gaming, senior/assisted living environments, and surveillance. In these scenarios, we might have to consider adding new motion classes (i.e. new types of human motions to be recognized) as well as new training data (say, for handling different type of subjects). Hence, both accuracy of classification and training time for the machine learning algorithms become important performance parameters in these cases. In this paper, we propose a Knowledge Based Hybrid (KBH) method that can compute the probabilities for Hidden Markov Models (HMMs) associated with different human motion classes. This computation is facilitated by appropriately mixing features from two different media types (3D motion capture and 2D video). We conducted a variety of experiments comparing the proposed KBH for HMMs and the traditional Baum-Welch algorithms. With the advantage of computing the HMMs parameters in a non-iterative manner, the KBH method outperforms the Baum-Welch algorithm both in terms of accuracy as well as reduced training time.</description><identifier>ISBN: 1424486726</identifier><identifier>ISBN: 9781424486724</identifier><identifier>EISBN: 0769542174</identifier><identifier>EISBN: 9780769542171</identifier><identifier>DOI: 10.1109/ISM.2010.19</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D Motion Capture ; Computer vision ; Data mining ; Feature extraction ; Hidden Markov models ; Human-Computer Interaction ; Humans ; Three dimensional displays ; Training ; Video Human Motion Recognition</subject><ispartof>2010 IEEE International Symposium on Multimedia, 2010, p.65-72</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c132t-6ecc2153f7b7f91930c548b7d617334dd23cf81c373a2acaa4f4530936e04df3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5693824$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5693824$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Myunghoon Suk</creatorcontrib><creatorcontrib>Ramadass, A</creatorcontrib><creatorcontrib>Yohan Jin</creatorcontrib><creatorcontrib>Prabhakaran, B</creatorcontrib><title>Video Human Motion Recognition Using Knowledge-Based Hybrid Method</title><title>2010 IEEE International Symposium on Multimedia</title><addtitle>ism</addtitle><description>Human motion recognition in video data has several interesting applications in fields such as gaming, senior/assisted living environments, and surveillance. In these scenarios, we might have to consider adding new motion classes (i.e. new types of human motions to be recognized) as well as new training data (say, for handling different type of subjects). Hence, both accuracy of classification and training time for the machine learning algorithms become important performance parameters in these cases. In this paper, we propose a Knowledge Based Hybrid (KBH) method that can compute the probabilities for Hidden Markov Models (HMMs) associated with different human motion classes. This computation is facilitated by appropriately mixing features from two different media types (3D motion capture and 2D video). We conducted a variety of experiments comparing the proposed KBH for HMMs and the traditional Baum-Welch algorithms. With the advantage of computing the HMMs parameters in a non-iterative manner, the KBH method outperforms the Baum-Welch algorithm both in terms of accuracy as well as reduced training time.</description><subject>3D Motion Capture</subject><subject>Computer vision</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>Hidden Markov models</subject><subject>Human-Computer Interaction</subject><subject>Humans</subject><subject>Three dimensional displays</subject><subject>Training</subject><subject>Video Human Motion Recognition</subject><isbn>1424486726</isbn><isbn>9781424486724</isbn><isbn>0769542174</isbn><isbn>9780769542171</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtOwzAUBY0QErR0xZKNfyDF9vUjXtIKSEUjJChsK8e-DkZtjJIg1L_neTYzszmEXHA255zZq9VTPRfsp-wRmTCjrZKCG3lMJlwKKUtthD4ls2F4Y99TwkjQZ2TxkgJmWn3sXUfrPKbc0Uf0ue3Srz8PqWvpfZc_dxhaLBZuwECrQ9OnQGscX3M4JyfR7Qac_XNKNrc3m2VVrB_uVsvrdeE5iLHQ6L3gCqJpTLTcAvNKlo0JmhsAGYIAH0vuwYATzjsno1TALGhkMkSYksu_24SI2_c-7V1_2CptoRQSvgCyi0gk</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Myunghoon Suk</creator><creator>Ramadass, A</creator><creator>Yohan Jin</creator><creator>Prabhakaran, B</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201012</creationdate><title>Video Human Motion Recognition Using Knowledge-Based Hybrid Method</title><author>Myunghoon Suk ; Ramadass, A ; Yohan Jin ; Prabhakaran, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c132t-6ecc2153f7b7f91930c548b7d617334dd23cf81c373a2acaa4f4530936e04df3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>3D Motion Capture</topic><topic>Computer vision</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>Hidden Markov models</topic><topic>Human-Computer Interaction</topic><topic>Humans</topic><topic>Three dimensional displays</topic><topic>Training</topic><topic>Video Human Motion Recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Myunghoon Suk</creatorcontrib><creatorcontrib>Ramadass, A</creatorcontrib><creatorcontrib>Yohan Jin</creatorcontrib><creatorcontrib>Prabhakaran, B</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Myunghoon Suk</au><au>Ramadass, A</au><au>Yohan Jin</au><au>Prabhakaran, B</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Video Human Motion Recognition Using Knowledge-Based Hybrid Method</atitle><btitle>2010 IEEE International Symposium on Multimedia</btitle><stitle>ism</stitle><date>2010-12</date><risdate>2010</risdate><spage>65</spage><epage>72</epage><pages>65-72</pages><isbn>1424486726</isbn><isbn>9781424486724</isbn><eisbn>0769542174</eisbn><eisbn>9780769542171</eisbn><abstract>Human motion recognition in video data has several interesting applications in fields such as gaming, senior/assisted living environments, and surveillance. In these scenarios, we might have to consider adding new motion classes (i.e. new types of human motions to be recognized) as well as new training data (say, for handling different type of subjects). Hence, both accuracy of classification and training time for the machine learning algorithms become important performance parameters in these cases. In this paper, we propose a Knowledge Based Hybrid (KBH) method that can compute the probabilities for Hidden Markov Models (HMMs) associated with different human motion classes. This computation is facilitated by appropriately mixing features from two different media types (3D motion capture and 2D video). We conducted a variety of experiments comparing the proposed KBH for HMMs and the traditional Baum-Welch algorithms. With the advantage of computing the HMMs parameters in a non-iterative manner, the KBH method outperforms the Baum-Welch algorithm both in terms of accuracy as well as reduced training time.</abstract><pub>IEEE</pub><doi>10.1109/ISM.2010.19</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424486726 |
ispartof | 2010 IEEE International Symposium on Multimedia, 2010, p.65-72 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5693824 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | 3D Motion Capture Computer vision Data mining Feature extraction Hidden Markov models Human-Computer Interaction Humans Three dimensional displays Training Video Human Motion Recognition |
title | Video Human Motion Recognition Using Knowledge-Based Hybrid Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A22%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Video%20Human%20Motion%20Recognition%20Using%20Knowledge-Based%20Hybrid%20Method&rft.btitle=2010%20IEEE%20International%20Symposium%20on%20Multimedia&rft.au=Myunghoon%20Suk&rft.date=2010-12&rft.spage=65&rft.epage=72&rft.pages=65-72&rft.isbn=1424486726&rft.isbn_list=9781424486724&rft_id=info:doi/10.1109/ISM.2010.19&rft_dat=%3Cieee_6IE%3E5693824%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769542174&rft.eisbn_list=9780769542171&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5693824&rfr_iscdi=true |