Video Human Motion Recognition Using Knowledge-Based Hybrid Method

Human motion recognition in video data has several interesting applications in fields such as gaming, senior/assisted living environments, and surveillance. In these scenarios, we might have to consider adding new motion classes (i.e. new types of human motions to be recognized) as well as new train...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Myunghoon Suk, Ramadass, A, Yohan Jin, Prabhakaran, B
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue
container_start_page 65
container_title
container_volume
creator Myunghoon Suk
Ramadass, A
Yohan Jin
Prabhakaran, B
description Human motion recognition in video data has several interesting applications in fields such as gaming, senior/assisted living environments, and surveillance. In these scenarios, we might have to consider adding new motion classes (i.e. new types of human motions to be recognized) as well as new training data (say, for handling different type of subjects). Hence, both accuracy of classification and training time for the machine learning algorithms become important performance parameters in these cases. In this paper, we propose a Knowledge Based Hybrid (KBH) method that can compute the probabilities for Hidden Markov Models (HMMs) associated with different human motion classes. This computation is facilitated by appropriately mixing features from two different media types (3D motion capture and 2D video). We conducted a variety of experiments comparing the proposed KBH for HMMs and the traditional Baum-Welch algorithms. With the advantage of computing the HMMs parameters in a non-iterative manner, the KBH method outperforms the Baum-Welch algorithm both in terms of accuracy as well as reduced training time.
doi_str_mv 10.1109/ISM.2010.19
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5693824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5693824</ieee_id><sourcerecordid>5693824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c132t-6ecc2153f7b7f91930c548b7d617334dd23cf81c373a2acaa4f4530936e04df3</originalsourceid><addsrcrecordid>eNotjMtOwzAUBY0QErR0xZKNfyDF9vUjXtIKSEUjJChsK8e-DkZtjJIg1L_neTYzszmEXHA255zZq9VTPRfsp-wRmTCjrZKCG3lMJlwKKUtthD4ls2F4Y99TwkjQZ2TxkgJmWn3sXUfrPKbc0Uf0ue3Srz8PqWvpfZc_dxhaLBZuwECrQ9OnQGscX3M4JyfR7Qac_XNKNrc3m2VVrB_uVsvrdeE5iLHQ6L3gCqJpTLTcAvNKlo0JmhsAGYIAH0vuwYATzjsno1TALGhkMkSYksu_24SI2_c-7V1_2CptoRQSvgCyi0gk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Video Human Motion Recognition Using Knowledge-Based Hybrid Method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Myunghoon Suk ; Ramadass, A ; Yohan Jin ; Prabhakaran, B</creator><creatorcontrib>Myunghoon Suk ; Ramadass, A ; Yohan Jin ; Prabhakaran, B</creatorcontrib><description>Human motion recognition in video data has several interesting applications in fields such as gaming, senior/assisted living environments, and surveillance. In these scenarios, we might have to consider adding new motion classes (i.e. new types of human motions to be recognized) as well as new training data (say, for handling different type of subjects). Hence, both accuracy of classification and training time for the machine learning algorithms become important performance parameters in these cases. In this paper, we propose a Knowledge Based Hybrid (KBH) method that can compute the probabilities for Hidden Markov Models (HMMs) associated with different human motion classes. This computation is facilitated by appropriately mixing features from two different media types (3D motion capture and 2D video). We conducted a variety of experiments comparing the proposed KBH for HMMs and the traditional Baum-Welch algorithms. With the advantage of computing the HMMs parameters in a non-iterative manner, the KBH method outperforms the Baum-Welch algorithm both in terms of accuracy as well as reduced training time.</description><identifier>ISBN: 1424486726</identifier><identifier>ISBN: 9781424486724</identifier><identifier>EISBN: 0769542174</identifier><identifier>EISBN: 9780769542171</identifier><identifier>DOI: 10.1109/ISM.2010.19</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D Motion Capture ; Computer vision ; Data mining ; Feature extraction ; Hidden Markov models ; Human-Computer Interaction ; Humans ; Three dimensional displays ; Training ; Video Human Motion Recognition</subject><ispartof>2010 IEEE International Symposium on Multimedia, 2010, p.65-72</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c132t-6ecc2153f7b7f91930c548b7d617334dd23cf81c373a2acaa4f4530936e04df3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5693824$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5693824$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Myunghoon Suk</creatorcontrib><creatorcontrib>Ramadass, A</creatorcontrib><creatorcontrib>Yohan Jin</creatorcontrib><creatorcontrib>Prabhakaran, B</creatorcontrib><title>Video Human Motion Recognition Using Knowledge-Based Hybrid Method</title><title>2010 IEEE International Symposium on Multimedia</title><addtitle>ism</addtitle><description>Human motion recognition in video data has several interesting applications in fields such as gaming, senior/assisted living environments, and surveillance. In these scenarios, we might have to consider adding new motion classes (i.e. new types of human motions to be recognized) as well as new training data (say, for handling different type of subjects). Hence, both accuracy of classification and training time for the machine learning algorithms become important performance parameters in these cases. In this paper, we propose a Knowledge Based Hybrid (KBH) method that can compute the probabilities for Hidden Markov Models (HMMs) associated with different human motion classes. This computation is facilitated by appropriately mixing features from two different media types (3D motion capture and 2D video). We conducted a variety of experiments comparing the proposed KBH for HMMs and the traditional Baum-Welch algorithms. With the advantage of computing the HMMs parameters in a non-iterative manner, the KBH method outperforms the Baum-Welch algorithm both in terms of accuracy as well as reduced training time.</description><subject>3D Motion Capture</subject><subject>Computer vision</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>Hidden Markov models</subject><subject>Human-Computer Interaction</subject><subject>Humans</subject><subject>Three dimensional displays</subject><subject>Training</subject><subject>Video Human Motion Recognition</subject><isbn>1424486726</isbn><isbn>9781424486724</isbn><isbn>0769542174</isbn><isbn>9780769542171</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtOwzAUBY0QErR0xZKNfyDF9vUjXtIKSEUjJChsK8e-DkZtjJIg1L_neTYzszmEXHA255zZq9VTPRfsp-wRmTCjrZKCG3lMJlwKKUtthD4ls2F4Y99TwkjQZ2TxkgJmWn3sXUfrPKbc0Uf0ue3Srz8PqWvpfZc_dxhaLBZuwECrQ9OnQGscX3M4JyfR7Qac_XNKNrc3m2VVrB_uVsvrdeE5iLHQ6L3gCqJpTLTcAvNKlo0JmhsAGYIAH0vuwYATzjsno1TALGhkMkSYksu_24SI2_c-7V1_2CptoRQSvgCyi0gk</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Myunghoon Suk</creator><creator>Ramadass, A</creator><creator>Yohan Jin</creator><creator>Prabhakaran, B</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201012</creationdate><title>Video Human Motion Recognition Using Knowledge-Based Hybrid Method</title><author>Myunghoon Suk ; Ramadass, A ; Yohan Jin ; Prabhakaran, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c132t-6ecc2153f7b7f91930c548b7d617334dd23cf81c373a2acaa4f4530936e04df3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>3D Motion Capture</topic><topic>Computer vision</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>Hidden Markov models</topic><topic>Human-Computer Interaction</topic><topic>Humans</topic><topic>Three dimensional displays</topic><topic>Training</topic><topic>Video Human Motion Recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Myunghoon Suk</creatorcontrib><creatorcontrib>Ramadass, A</creatorcontrib><creatorcontrib>Yohan Jin</creatorcontrib><creatorcontrib>Prabhakaran, B</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Myunghoon Suk</au><au>Ramadass, A</au><au>Yohan Jin</au><au>Prabhakaran, B</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Video Human Motion Recognition Using Knowledge-Based Hybrid Method</atitle><btitle>2010 IEEE International Symposium on Multimedia</btitle><stitle>ism</stitle><date>2010-12</date><risdate>2010</risdate><spage>65</spage><epage>72</epage><pages>65-72</pages><isbn>1424486726</isbn><isbn>9781424486724</isbn><eisbn>0769542174</eisbn><eisbn>9780769542171</eisbn><abstract>Human motion recognition in video data has several interesting applications in fields such as gaming, senior/assisted living environments, and surveillance. In these scenarios, we might have to consider adding new motion classes (i.e. new types of human motions to be recognized) as well as new training data (say, for handling different type of subjects). Hence, both accuracy of classification and training time for the machine learning algorithms become important performance parameters in these cases. In this paper, we propose a Knowledge Based Hybrid (KBH) method that can compute the probabilities for Hidden Markov Models (HMMs) associated with different human motion classes. This computation is facilitated by appropriately mixing features from two different media types (3D motion capture and 2D video). We conducted a variety of experiments comparing the proposed KBH for HMMs and the traditional Baum-Welch algorithms. With the advantage of computing the HMMs parameters in a non-iterative manner, the KBH method outperforms the Baum-Welch algorithm both in terms of accuracy as well as reduced training time.</abstract><pub>IEEE</pub><doi>10.1109/ISM.2010.19</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424486726
ispartof 2010 IEEE International Symposium on Multimedia, 2010, p.65-72
issn
language eng
recordid cdi_ieee_primary_5693824
source IEEE Electronic Library (IEL) Conference Proceedings
subjects 3D Motion Capture
Computer vision
Data mining
Feature extraction
Hidden Markov models
Human-Computer Interaction
Humans
Three dimensional displays
Training
Video Human Motion Recognition
title Video Human Motion Recognition Using Knowledge-Based Hybrid Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A22%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Video%20Human%20Motion%20Recognition%20Using%20Knowledge-Based%20Hybrid%20Method&rft.btitle=2010%20IEEE%20International%20Symposium%20on%20Multimedia&rft.au=Myunghoon%20Suk&rft.date=2010-12&rft.spage=65&rft.epage=72&rft.pages=65-72&rft.isbn=1424486726&rft.isbn_list=9781424486724&rft_id=info:doi/10.1109/ISM.2010.19&rft_dat=%3Cieee_6IE%3E5693824%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769542174&rft.eisbn_list=9780769542171&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5693824&rfr_iscdi=true