Research of Command Automation System Survivability Assessment Model

Based on the structural complexity of command automation system, starting from command automation system itself and the relationship between system and its environment, survivability analysis of command automation system is divided into three sub-problems of system services, external environment and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rulin Hu, Xinhua He, Shaomin Yang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 679
container_issue
container_start_page 676
container_title
container_volume
creator Rulin Hu
Xinhua He
Shaomin Yang
description Based on the structural complexity of command automation system, starting from command automation system itself and the relationship between system and its environment, survivability analysis of command automation system is divided into three sub-problems of system services, external environment and model construction to be analyzed respectively. Therefore, it simplifies the complexity of the problem. Based on the uncertainty of survivability assessment information of command automation system, Bayesian network is introduced into model construction. This paper demonstrates the model construction process of command automation system survivability assessment by an example. This method has a good operability. It can not only quantitatively calculate the survivability probability of command automation system, but can also identify the major environmental factors affecting the system and the weak links of the system by diagnostic reasoning.
doi_str_mv 10.1109/ICINIS.2010.122
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5693795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5693795</ieee_id><sourcerecordid>5693795</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-7d673466c7891c8b6e2cf47fdd3b5c7e18c02a24f333c31bb4fcf735b254d803</originalsourceid><addsrcrecordid>eNotjMtKxDAARSMiKGPXLtzkBzrm_ViW-iqMCtb9kKQJBppWmsxA_15HXd17LocLwA1GW4yRvuva7rXrtwSdBkLOQKWlQlJozgjT5PyX8U9nijNFLkGVc7SICClOzhW4f_fZm8V9wjnAdk7JTANsDmVOpsR5gv2ai0-wPyzHeDQ2jrGssMnZ55z8VODLPPjxGlwEM2Zf_ecG9I8PH-1zvXt76tpmV0eNSi0HISkTwkmlsVNWeOICk2EYqOVOeqwcIoawQCl1FFvLgguScks4GxSiG3D79xq99_uvJSazrHsuNJWa029l9Ux_</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Research of Command Automation System Survivability Assessment Model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rulin Hu ; Xinhua He ; Shaomin Yang</creator><creatorcontrib>Rulin Hu ; Xinhua He ; Shaomin Yang</creatorcontrib><description>Based on the structural complexity of command automation system, starting from command automation system itself and the relationship between system and its environment, survivability analysis of command automation system is divided into three sub-problems of system services, external environment and model construction to be analyzed respectively. Therefore, it simplifies the complexity of the problem. Based on the uncertainty of survivability assessment information of command automation system, Bayesian network is introduced into model construction. This paper demonstrates the model construction process of command automation system survivability assessment by an example. This method has a good operability. It can not only quantitatively calculate the survivability probability of command automation system, but can also identify the major environmental factors affecting the system and the weak links of the system by diagnostic reasoning.</description><identifier>ISBN: 9781424485482</identifier><identifier>ISBN: 1424485487</identifier><identifier>EISBN: 9780769542492</identifier><identifier>EISBN: 0769542492</identifier><identifier>DOI: 10.1109/ICINIS.2010.122</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Approximation algorithms ; Automation ; Bayesian methods ; bayesian networks ; Cognition ; command automation system ; Inference algorithms ; Mathematical model ; quantitative assessment ; survivability ; uncertainty reasoning</subject><ispartof>2010 Third International Conference on Intelligent Networks and Intelligent Systems, 2010, p.676-679</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5693795$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5693795$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rulin Hu</creatorcontrib><creatorcontrib>Xinhua He</creatorcontrib><creatorcontrib>Shaomin Yang</creatorcontrib><title>Research of Command Automation System Survivability Assessment Model</title><title>2010 Third International Conference on Intelligent Networks and Intelligent Systems</title><addtitle>icinis</addtitle><description>Based on the structural complexity of command automation system, starting from command automation system itself and the relationship between system and its environment, survivability analysis of command automation system is divided into three sub-problems of system services, external environment and model construction to be analyzed respectively. Therefore, it simplifies the complexity of the problem. Based on the uncertainty of survivability assessment information of command automation system, Bayesian network is introduced into model construction. This paper demonstrates the model construction process of command automation system survivability assessment by an example. This method has a good operability. It can not only quantitatively calculate the survivability probability of command automation system, but can also identify the major environmental factors affecting the system and the weak links of the system by diagnostic reasoning.</description><subject>Analytical models</subject><subject>Approximation algorithms</subject><subject>Automation</subject><subject>Bayesian methods</subject><subject>bayesian networks</subject><subject>Cognition</subject><subject>command automation system</subject><subject>Inference algorithms</subject><subject>Mathematical model</subject><subject>quantitative assessment</subject><subject>survivability</subject><subject>uncertainty reasoning</subject><isbn>9781424485482</isbn><isbn>1424485487</isbn><isbn>9780769542492</isbn><isbn>0769542492</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtKxDAARSMiKGPXLtzkBzrm_ViW-iqMCtb9kKQJBppWmsxA_15HXd17LocLwA1GW4yRvuva7rXrtwSdBkLOQKWlQlJozgjT5PyX8U9nijNFLkGVc7SICClOzhW4f_fZm8V9wjnAdk7JTANsDmVOpsR5gv2ai0-wPyzHeDQ2jrGssMnZ55z8VODLPPjxGlwEM2Zf_ecG9I8PH-1zvXt76tpmV0eNSi0HISkTwkmlsVNWeOICk2EYqOVOeqwcIoawQCl1FFvLgguScks4GxSiG3D79xq99_uvJSazrHsuNJWa029l9Ux_</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Rulin Hu</creator><creator>Xinhua He</creator><creator>Shaomin Yang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201011</creationdate><title>Research of Command Automation System Survivability Assessment Model</title><author>Rulin Hu ; Xinhua He ; Shaomin Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-7d673466c7891c8b6e2cf47fdd3b5c7e18c02a24f333c31bb4fcf735b254d803</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical models</topic><topic>Approximation algorithms</topic><topic>Automation</topic><topic>Bayesian methods</topic><topic>bayesian networks</topic><topic>Cognition</topic><topic>command automation system</topic><topic>Inference algorithms</topic><topic>Mathematical model</topic><topic>quantitative assessment</topic><topic>survivability</topic><topic>uncertainty reasoning</topic><toplevel>online_resources</toplevel><creatorcontrib>Rulin Hu</creatorcontrib><creatorcontrib>Xinhua He</creatorcontrib><creatorcontrib>Shaomin Yang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rulin Hu</au><au>Xinhua He</au><au>Shaomin Yang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Research of Command Automation System Survivability Assessment Model</atitle><btitle>2010 Third International Conference on Intelligent Networks and Intelligent Systems</btitle><stitle>icinis</stitle><date>2010-11</date><risdate>2010</risdate><spage>676</spage><epage>679</epage><pages>676-679</pages><isbn>9781424485482</isbn><isbn>1424485487</isbn><eisbn>9780769542492</eisbn><eisbn>0769542492</eisbn><abstract>Based on the structural complexity of command automation system, starting from command automation system itself and the relationship between system and its environment, survivability analysis of command automation system is divided into three sub-problems of system services, external environment and model construction to be analyzed respectively. Therefore, it simplifies the complexity of the problem. Based on the uncertainty of survivability assessment information of command automation system, Bayesian network is introduced into model construction. This paper demonstrates the model construction process of command automation system survivability assessment by an example. This method has a good operability. It can not only quantitatively calculate the survivability probability of command automation system, but can also identify the major environmental factors affecting the system and the weak links of the system by diagnostic reasoning.</abstract><pub>IEEE</pub><doi>10.1109/ICINIS.2010.122</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424485482
ispartof 2010 Third International Conference on Intelligent Networks and Intelligent Systems, 2010, p.676-679
issn
language eng
recordid cdi_ieee_primary_5693795
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Analytical models
Approximation algorithms
Automation
Bayesian methods
bayesian networks
Cognition
command automation system
Inference algorithms
Mathematical model
quantitative assessment
survivability
uncertainty reasoning
title Research of Command Automation System Survivability Assessment Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Research%20of%20Command%20Automation%20System%20Survivability%20Assessment%20Model&rft.btitle=2010%20Third%20International%20Conference%20on%20Intelligent%20Networks%20and%20Intelligent%20Systems&rft.au=Rulin%20Hu&rft.date=2010-11&rft.spage=676&rft.epage=679&rft.pages=676-679&rft.isbn=9781424485482&rft.isbn_list=1424485487&rft_id=info:doi/10.1109/ICINIS.2010.122&rft_dat=%3Cieee_6IE%3E5693795%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769542492&rft.eisbn_list=0769542492&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5693795&rfr_iscdi=true