Traffic Velocity Prediction Using GPS Data: IEEE ICDM Contest Task 3 Report
This report summarizes the methodologies and techniques we developed and applied for tackling task 3 of the IEEE ICDM Contest on predicting traffic velocity based on GPS data. The major components of our solution include 1) A pre-processing procedure to map GPS data to the network, 2) A K-nearest ne...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1371 |
---|---|
container_issue | |
container_start_page | 1369 |
container_title | |
container_volume | |
creator | Wei Shen Kamarianakis, Y Wynter, L Jingrui He Qing He Lawrence, R Swirszcz, G |
description | This report summarizes the methodologies and techniques we developed and applied for tackling task 3 of the IEEE ICDM Contest on predicting traffic velocity based on GPS data. The major components of our solution include 1) A pre-processing procedure to map GPS data to the network, 2) A K-nearest neighbor approach for identifying the most similar training hours for every test hour, and 3) A heuristic evaluation framework for optimizing parameters and avoiding over-fitting. Our solution finished Second in the final evaluation. |
doi_str_mv | 10.1109/ICDMW.2010.52 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5693455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5693455</ieee_id><sourcerecordid>5693455</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-46bc2c80a4eb31b7cd5a9b7715dd03c3565411cb6ef9622b365189c14fd0ef1f3</originalsourceid><addsrcrecordid>eNo9jslOwzAYhM0mUZUcOXHxC6R4--2YG0pDiSiiggDHynFsZChNFfvStycsYqTRaPRJo0HonJIZpURf1uX8_nXGyNiBHaBMq4IoqUEwUOoQTRhXkGsG-uiHUcGE0KPZ8T_j7BRlMb6TUcCUUjBBd81gvA8Wv7hNb0Pa49XgumBT6Lf4OYbtG16snvDcJHOF66qq8PcRXPbb5GLCjYkfmONHt-uHdIZOvNlEl_3lFDU3VVPe5suHRV1eL_OgScqFbC2zBTHCtZy2ynZgdKsUha4j3HKQICi1rXReS8ZaLoEW2lLhO-I89XyKLn5ng3NuvRvCpxn2a5CaCwD-BRNzT3M</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Traffic Velocity Prediction Using GPS Data: IEEE ICDM Contest Task 3 Report</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wei Shen ; Kamarianakis, Y ; Wynter, L ; Jingrui He ; Qing He ; Lawrence, R ; Swirszcz, G</creator><creatorcontrib>Wei Shen ; Kamarianakis, Y ; Wynter, L ; Jingrui He ; Qing He ; Lawrence, R ; Swirszcz, G</creatorcontrib><description>This report summarizes the methodologies and techniques we developed and applied for tackling task 3 of the IEEE ICDM Contest on predicting traffic velocity based on GPS data. The major components of our solution include 1) A pre-processing procedure to map GPS data to the network, 2) A K-nearest neighbor approach for identifying the most similar training hours for every test hour, and 3) A heuristic evaluation framework for optimizing parameters and avoiding over-fitting. Our solution finished Second in the final evaluation.</description><identifier>ISSN: 2375-9232</identifier><identifier>ISBN: 9781424492442</identifier><identifier>ISBN: 1424492440</identifier><identifier>EISSN: 2375-9259</identifier><identifier>EISBN: 9780769542577</identifier><identifier>EISBN: 0769542573</identifier><identifier>DOI: 10.1109/ICDMW.2010.52</identifier><language>eng</language><publisher>IEEE</publisher><subject>cross validation ; Data models ; Global Positioning System ; Harmonic analysis ; map-matching ; nearest neighbor ; Predictive models ; Roads ; Training ; Vehicles</subject><ispartof>2010 IEEE International Conference on Data Mining Workshops, 2010, p.1369-1371</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5693455$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5693455$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wei Shen</creatorcontrib><creatorcontrib>Kamarianakis, Y</creatorcontrib><creatorcontrib>Wynter, L</creatorcontrib><creatorcontrib>Jingrui He</creatorcontrib><creatorcontrib>Qing He</creatorcontrib><creatorcontrib>Lawrence, R</creatorcontrib><creatorcontrib>Swirszcz, G</creatorcontrib><title>Traffic Velocity Prediction Using GPS Data: IEEE ICDM Contest Task 3 Report</title><title>2010 IEEE International Conference on Data Mining Workshops</title><addtitle>icdmw</addtitle><description>This report summarizes the methodologies and techniques we developed and applied for tackling task 3 of the IEEE ICDM Contest on predicting traffic velocity based on GPS data. The major components of our solution include 1) A pre-processing procedure to map GPS data to the network, 2) A K-nearest neighbor approach for identifying the most similar training hours for every test hour, and 3) A heuristic evaluation framework for optimizing parameters and avoiding over-fitting. Our solution finished Second in the final evaluation.</description><subject>cross validation</subject><subject>Data models</subject><subject>Global Positioning System</subject><subject>Harmonic analysis</subject><subject>map-matching</subject><subject>nearest neighbor</subject><subject>Predictive models</subject><subject>Roads</subject><subject>Training</subject><subject>Vehicles</subject><issn>2375-9232</issn><issn>2375-9259</issn><isbn>9781424492442</isbn><isbn>1424492440</isbn><isbn>9780769542577</isbn><isbn>0769542573</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9jslOwzAYhM0mUZUcOXHxC6R4--2YG0pDiSiiggDHynFsZChNFfvStycsYqTRaPRJo0HonJIZpURf1uX8_nXGyNiBHaBMq4IoqUEwUOoQTRhXkGsG-uiHUcGE0KPZ8T_j7BRlMb6TUcCUUjBBd81gvA8Wv7hNb0Pa49XgumBT6Lf4OYbtG16snvDcJHOF66qq8PcRXPbb5GLCjYkfmONHt-uHdIZOvNlEl_3lFDU3VVPe5suHRV1eL_OgScqFbC2zBTHCtZy2ynZgdKsUha4j3HKQICi1rXReS8ZaLoEW2lLhO-I89XyKLn5ng3NuvRvCpxn2a5CaCwD-BRNzT3M</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Wei Shen</creator><creator>Kamarianakis, Y</creator><creator>Wynter, L</creator><creator>Jingrui He</creator><creator>Qing He</creator><creator>Lawrence, R</creator><creator>Swirszcz, G</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201012</creationdate><title>Traffic Velocity Prediction Using GPS Data: IEEE ICDM Contest Task 3 Report</title><author>Wei Shen ; Kamarianakis, Y ; Wynter, L ; Jingrui He ; Qing He ; Lawrence, R ; Swirszcz, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-46bc2c80a4eb31b7cd5a9b7715dd03c3565411cb6ef9622b365189c14fd0ef1f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>cross validation</topic><topic>Data models</topic><topic>Global Positioning System</topic><topic>Harmonic analysis</topic><topic>map-matching</topic><topic>nearest neighbor</topic><topic>Predictive models</topic><topic>Roads</topic><topic>Training</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Wei Shen</creatorcontrib><creatorcontrib>Kamarianakis, Y</creatorcontrib><creatorcontrib>Wynter, L</creatorcontrib><creatorcontrib>Jingrui He</creatorcontrib><creatorcontrib>Qing He</creatorcontrib><creatorcontrib>Lawrence, R</creatorcontrib><creatorcontrib>Swirszcz, G</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei Shen</au><au>Kamarianakis, Y</au><au>Wynter, L</au><au>Jingrui He</au><au>Qing He</au><au>Lawrence, R</au><au>Swirszcz, G</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Traffic Velocity Prediction Using GPS Data: IEEE ICDM Contest Task 3 Report</atitle><btitle>2010 IEEE International Conference on Data Mining Workshops</btitle><stitle>icdmw</stitle><date>2010-12</date><risdate>2010</risdate><spage>1369</spage><epage>1371</epage><pages>1369-1371</pages><issn>2375-9232</issn><eissn>2375-9259</eissn><isbn>9781424492442</isbn><isbn>1424492440</isbn><eisbn>9780769542577</eisbn><eisbn>0769542573</eisbn><abstract>This report summarizes the methodologies and techniques we developed and applied for tackling task 3 of the IEEE ICDM Contest on predicting traffic velocity based on GPS data. The major components of our solution include 1) A pre-processing procedure to map GPS data to the network, 2) A K-nearest neighbor approach for identifying the most similar training hours for every test hour, and 3) A heuristic evaluation framework for optimizing parameters and avoiding over-fitting. Our solution finished Second in the final evaluation.</abstract><pub>IEEE</pub><doi>10.1109/ICDMW.2010.52</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2375-9232 |
ispartof | 2010 IEEE International Conference on Data Mining Workshops, 2010, p.1369-1371 |
issn | 2375-9232 2375-9259 |
language | eng |
recordid | cdi_ieee_primary_5693455 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | cross validation Data models Global Positioning System Harmonic analysis map-matching nearest neighbor Predictive models Roads Training Vehicles |
title | Traffic Velocity Prediction Using GPS Data: IEEE ICDM Contest Task 3 Report |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Traffic%20Velocity%20Prediction%20Using%20GPS%20Data:%20IEEE%20ICDM%20Contest%20Task%203%20Report&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Data%20Mining%20Workshops&rft.au=Wei%20Shen&rft.date=2010-12&rft.spage=1369&rft.epage=1371&rft.pages=1369-1371&rft.issn=2375-9232&rft.eissn=2375-9259&rft.isbn=9781424492442&rft.isbn_list=1424492440&rft_id=info:doi/10.1109/ICDMW.2010.52&rft_dat=%3Cieee_6IE%3E5693455%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769542577&rft.eisbn_list=0769542573&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5693455&rfr_iscdi=true |