A Virtual Metrology System for Predicting End-of-Line Electrical Properties Using a MANCOVA Model With Tools Clustering

The ability to predict end-of-line electrical properties of wafer in semiconductor manufacturing processes is critical to developing and maintaining a high yield. However, this is difficult because an advanced wafer manufacturing process consists of 300-400 steps, and in-line metrology data is only...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2011-05, Vol.7 (2), p.187-195
Hauptverfasser: Tian-Hong Pan, Bi-Qi Sheng, Wong, D S-H, Shi-Shang Jang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 195
container_issue 2
container_start_page 187
container_title IEEE transactions on industrial informatics
container_volume 7
creator Tian-Hong Pan
Bi-Qi Sheng
Wong, D S-H
Shi-Shang Jang
description The ability to predict end-of-line electrical properties of wafer in semiconductor manufacturing processes is critical to developing and maintaining a high yield. However, this is difficult because an advanced wafer manufacturing process consists of 300-400 steps, and in-line metrology data is only available for a few steps and for infrequently sampled wafers. Although a large amount of equipment sensor outputs are readily available for most wafers, most of the sensor variables may not be related to the end-of-line properties. Further, differences in end-of-line properties of wafers processed by tools of the same stage do not imply differences in the values of sensor variables between these tools. Thus, it is important to develop a reliable screening and model building procedure to construct a robust virtual metrology model with good generalization capability. Despite its simplicity, this approach is found to have significantly better generalization capability than nonlinear models, as well as substantial improvement in modeling and prediction capabilities of linear models that use only in-line metrology. The proposed method is also evaluated by an industrial application in a local fabrication unit.
doi_str_mv 10.1109/TII.2010.2098416
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5692873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5692873</ieee_id><sourcerecordid>2554883021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-af5884da7cc0b67cbe4be71e5fe98c2b111e967bc95887827584240503fedaaf3</originalsourceid><addsrcrecordid>eNpdkU1rGzEQhpeQQj7ae6EXkUtOm-prV9LRGCc12E2gTnoUWu1sqiCvHElL8L-PjEMOPc0MPO8ww1NV3wm-IQSrn5vl8obiMlGsJCftSXVOFCc1xg0-LX3TkJpRzM6qi5ReMGYCM3Vevc3Qk4t5Mh6tIcfgw_Me_dmnDFs0hIgeIvTOZjc-o8XY12GoV24EtPBgc3S2xB5i2EHMDhJ6TAfOoPXs9_z-aYbWoQeP_rr8D21C8AnN_VQ2x0J9rb4Mxif49lEvq8fbxWb-q17d3y3ns1VtGaW5NkMjJe-NsBZ3rbAd8A4EgWYAJS3tCCGgWtFZVTghqWgkp7y8zAbojRnYZXV93LuL4XWClPXWJQvemxHClLSUuG2Z5LiQV_-RL2GKYzlOK8K5aIiSBcJHyMaQUoRB76LbmrjXBOuDB1086IMH_eGhRH4cIw4APvGmVVQKxt4Bl16DlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914475198</pqid></control><display><type>article</type><title>A Virtual Metrology System for Predicting End-of-Line Electrical Properties Using a MANCOVA Model With Tools Clustering</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Tian-Hong Pan ; Bi-Qi Sheng ; Wong, D S-H ; Shi-Shang Jang</creator><creatorcontrib>Tian-Hong Pan ; Bi-Qi Sheng ; Wong, D S-H ; Shi-Shang Jang</creatorcontrib><description>The ability to predict end-of-line electrical properties of wafer in semiconductor manufacturing processes is critical to developing and maintaining a high yield. However, this is difficult because an advanced wafer manufacturing process consists of 300-400 steps, and in-line metrology data is only available for a few steps and for infrequently sampled wafers. Although a large amount of equipment sensor outputs are readily available for most wafers, most of the sensor variables may not be related to the end-of-line properties. Further, differences in end-of-line properties of wafers processed by tools of the same stage do not imply differences in the values of sensor variables between these tools. Thus, it is important to develop a reliable screening and model building procedure to construct a robust virtual metrology model with good generalization capability. Despite its simplicity, this approach is found to have significantly better generalization capability than nonlinear models, as well as substantial improvement in modeling and prediction capabilities of linear models that use only in-line metrology. The proposed method is also evaluated by an industrial application in a local fabrication unit.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2010.2098416</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analysis of variance ; Buildings ; Electrical properties ; Indexes ; MANCOVA ; Manufacturing ; Mathematical models ; Metrology ; Nonlinearity ; Principal component analysis ; Screening ; Semiconductor device modeling ; semiconductor manufacturing ; Semiconductors ; Sensors ; Studies ; virtual metrology ; wafer acceptance test ; Wafers</subject><ispartof>IEEE transactions on industrial informatics, 2011-05, Vol.7 (2), p.187-195</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2011</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-af5884da7cc0b67cbe4be71e5fe98c2b111e967bc95887827584240503fedaaf3</citedby><cites>FETCH-LOGICAL-c322t-af5884da7cc0b67cbe4be71e5fe98c2b111e967bc95887827584240503fedaaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5692873$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5692873$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tian-Hong Pan</creatorcontrib><creatorcontrib>Bi-Qi Sheng</creatorcontrib><creatorcontrib>Wong, D S-H</creatorcontrib><creatorcontrib>Shi-Shang Jang</creatorcontrib><title>A Virtual Metrology System for Predicting End-of-Line Electrical Properties Using a MANCOVA Model With Tools Clustering</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>The ability to predict end-of-line electrical properties of wafer in semiconductor manufacturing processes is critical to developing and maintaining a high yield. However, this is difficult because an advanced wafer manufacturing process consists of 300-400 steps, and in-line metrology data is only available for a few steps and for infrequently sampled wafers. Although a large amount of equipment sensor outputs are readily available for most wafers, most of the sensor variables may not be related to the end-of-line properties. Further, differences in end-of-line properties of wafers processed by tools of the same stage do not imply differences in the values of sensor variables between these tools. Thus, it is important to develop a reliable screening and model building procedure to construct a robust virtual metrology model with good generalization capability. Despite its simplicity, this approach is found to have significantly better generalization capability than nonlinear models, as well as substantial improvement in modeling and prediction capabilities of linear models that use only in-line metrology. The proposed method is also evaluated by an industrial application in a local fabrication unit.</description><subject>Analysis of variance</subject><subject>Buildings</subject><subject>Electrical properties</subject><subject>Indexes</subject><subject>MANCOVA</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Metrology</subject><subject>Nonlinearity</subject><subject>Principal component analysis</subject><subject>Screening</subject><subject>Semiconductor device modeling</subject><subject>semiconductor manufacturing</subject><subject>Semiconductors</subject><subject>Sensors</subject><subject>Studies</subject><subject>virtual metrology</subject><subject>wafer acceptance test</subject><subject>Wafers</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1rGzEQhpeQQj7ae6EXkUtOm-prV9LRGCc12E2gTnoUWu1sqiCvHElL8L-PjEMOPc0MPO8ww1NV3wm-IQSrn5vl8obiMlGsJCftSXVOFCc1xg0-LX3TkJpRzM6qi5ReMGYCM3Vevc3Qk4t5Mh6tIcfgw_Me_dmnDFs0hIgeIvTOZjc-o8XY12GoV24EtPBgc3S2xB5i2EHMDhJ6TAfOoPXs9_z-aYbWoQeP_rr8D21C8AnN_VQ2x0J9rb4Mxif49lEvq8fbxWb-q17d3y3ns1VtGaW5NkMjJe-NsBZ3rbAd8A4EgWYAJS3tCCGgWtFZVTghqWgkp7y8zAbojRnYZXV93LuL4XWClPXWJQvemxHClLSUuG2Z5LiQV_-RL2GKYzlOK8K5aIiSBcJHyMaQUoRB76LbmrjXBOuDB1086IMH_eGhRH4cIw4APvGmVVQKxt4Bl16DlA</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Tian-Hong Pan</creator><creator>Bi-Qi Sheng</creator><creator>Wong, D S-H</creator><creator>Shi-Shang Jang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201105</creationdate><title>A Virtual Metrology System for Predicting End-of-Line Electrical Properties Using a MANCOVA Model With Tools Clustering</title><author>Tian-Hong Pan ; Bi-Qi Sheng ; Wong, D S-H ; Shi-Shang Jang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-af5884da7cc0b67cbe4be71e5fe98c2b111e967bc95887827584240503fedaaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis of variance</topic><topic>Buildings</topic><topic>Electrical properties</topic><topic>Indexes</topic><topic>MANCOVA</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Metrology</topic><topic>Nonlinearity</topic><topic>Principal component analysis</topic><topic>Screening</topic><topic>Semiconductor device modeling</topic><topic>semiconductor manufacturing</topic><topic>Semiconductors</topic><topic>Sensors</topic><topic>Studies</topic><topic>virtual metrology</topic><topic>wafer acceptance test</topic><topic>Wafers</topic><toplevel>online_resources</toplevel><creatorcontrib>Tian-Hong Pan</creatorcontrib><creatorcontrib>Bi-Qi Sheng</creatorcontrib><creatorcontrib>Wong, D S-H</creatorcontrib><creatorcontrib>Shi-Shang Jang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tian-Hong Pan</au><au>Bi-Qi Sheng</au><au>Wong, D S-H</au><au>Shi-Shang Jang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Virtual Metrology System for Predicting End-of-Line Electrical Properties Using a MANCOVA Model With Tools Clustering</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2011-05</date><risdate>2011</risdate><volume>7</volume><issue>2</issue><spage>187</spage><epage>195</epage><pages>187-195</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>The ability to predict end-of-line electrical properties of wafer in semiconductor manufacturing processes is critical to developing and maintaining a high yield. However, this is difficult because an advanced wafer manufacturing process consists of 300-400 steps, and in-line metrology data is only available for a few steps and for infrequently sampled wafers. Although a large amount of equipment sensor outputs are readily available for most wafers, most of the sensor variables may not be related to the end-of-line properties. Further, differences in end-of-line properties of wafers processed by tools of the same stage do not imply differences in the values of sensor variables between these tools. Thus, it is important to develop a reliable screening and model building procedure to construct a robust virtual metrology model with good generalization capability. Despite its simplicity, this approach is found to have significantly better generalization capability than nonlinear models, as well as substantial improvement in modeling and prediction capabilities of linear models that use only in-line metrology. The proposed method is also evaluated by an industrial application in a local fabrication unit.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2010.2098416</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2011-05, Vol.7 (2), p.187-195
issn 1551-3203
1941-0050
language eng
recordid cdi_ieee_primary_5692873
source IEEE/IET Electronic Library (IEL)
subjects Analysis of variance
Buildings
Electrical properties
Indexes
MANCOVA
Manufacturing
Mathematical models
Metrology
Nonlinearity
Principal component analysis
Screening
Semiconductor device modeling
semiconductor manufacturing
Semiconductors
Sensors
Studies
virtual metrology
wafer acceptance test
Wafers
title A Virtual Metrology System for Predicting End-of-Line Electrical Properties Using a MANCOVA Model With Tools Clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A16%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Virtual%20Metrology%20System%20for%20Predicting%20End-of-Line%20Electrical%20Properties%20Using%20a%20MANCOVA%20Model%20With%20Tools%20Clustering&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Tian-Hong%20Pan&rft.date=2011-05&rft.volume=7&rft.issue=2&rft.spage=187&rft.epage=195&rft.pages=187-195&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2010.2098416&rft_dat=%3Cproquest_RIE%3E2554883021%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914475198&rft_id=info:pmid/&rft_ieee_id=5692873&rfr_iscdi=true