A Virtual Metrology System for Predicting End-of-Line Electrical Properties Using a MANCOVA Model With Tools Clustering
The ability to predict end-of-line electrical properties of wafer in semiconductor manufacturing processes is critical to developing and maintaining a high yield. However, this is difficult because an advanced wafer manufacturing process consists of 300-400 steps, and in-line metrology data is only...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2011-05, Vol.7 (2), p.187-195 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 195 |
---|---|
container_issue | 2 |
container_start_page | 187 |
container_title | IEEE transactions on industrial informatics |
container_volume | 7 |
creator | Tian-Hong Pan Bi-Qi Sheng Wong, D S-H Shi-Shang Jang |
description | The ability to predict end-of-line electrical properties of wafer in semiconductor manufacturing processes is critical to developing and maintaining a high yield. However, this is difficult because an advanced wafer manufacturing process consists of 300-400 steps, and in-line metrology data is only available for a few steps and for infrequently sampled wafers. Although a large amount of equipment sensor outputs are readily available for most wafers, most of the sensor variables may not be related to the end-of-line properties. Further, differences in end-of-line properties of wafers processed by tools of the same stage do not imply differences in the values of sensor variables between these tools. Thus, it is important to develop a reliable screening and model building procedure to construct a robust virtual metrology model with good generalization capability. Despite its simplicity, this approach is found to have significantly better generalization capability than nonlinear models, as well as substantial improvement in modeling and prediction capabilities of linear models that use only in-line metrology. The proposed method is also evaluated by an industrial application in a local fabrication unit. |
doi_str_mv | 10.1109/TII.2010.2098416 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5692873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5692873</ieee_id><sourcerecordid>2554883021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-af5884da7cc0b67cbe4be71e5fe98c2b111e967bc95887827584240503fedaaf3</originalsourceid><addsrcrecordid>eNpdkU1rGzEQhpeQQj7ae6EXkUtOm-prV9LRGCc12E2gTnoUWu1sqiCvHElL8L-PjEMOPc0MPO8ww1NV3wm-IQSrn5vl8obiMlGsJCftSXVOFCc1xg0-LX3TkJpRzM6qi5ReMGYCM3Vevc3Qk4t5Mh6tIcfgw_Me_dmnDFs0hIgeIvTOZjc-o8XY12GoV24EtPBgc3S2xB5i2EHMDhJ6TAfOoPXs9_z-aYbWoQeP_rr8D21C8AnN_VQ2x0J9rb4Mxif49lEvq8fbxWb-q17d3y3ns1VtGaW5NkMjJe-NsBZ3rbAd8A4EgWYAJS3tCCGgWtFZVTghqWgkp7y8zAbojRnYZXV93LuL4XWClPXWJQvemxHClLSUuG2Z5LiQV_-RL2GKYzlOK8K5aIiSBcJHyMaQUoRB76LbmrjXBOuDB1086IMH_eGhRH4cIw4APvGmVVQKxt4Bl16DlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914475198</pqid></control><display><type>article</type><title>A Virtual Metrology System for Predicting End-of-Line Electrical Properties Using a MANCOVA Model With Tools Clustering</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Tian-Hong Pan ; Bi-Qi Sheng ; Wong, D S-H ; Shi-Shang Jang</creator><creatorcontrib>Tian-Hong Pan ; Bi-Qi Sheng ; Wong, D S-H ; Shi-Shang Jang</creatorcontrib><description>The ability to predict end-of-line electrical properties of wafer in semiconductor manufacturing processes is critical to developing and maintaining a high yield. However, this is difficult because an advanced wafer manufacturing process consists of 300-400 steps, and in-line metrology data is only available for a few steps and for infrequently sampled wafers. Although a large amount of equipment sensor outputs are readily available for most wafers, most of the sensor variables may not be related to the end-of-line properties. Further, differences in end-of-line properties of wafers processed by tools of the same stage do not imply differences in the values of sensor variables between these tools. Thus, it is important to develop a reliable screening and model building procedure to construct a robust virtual metrology model with good generalization capability. Despite its simplicity, this approach is found to have significantly better generalization capability than nonlinear models, as well as substantial improvement in modeling and prediction capabilities of linear models that use only in-line metrology. The proposed method is also evaluated by an industrial application in a local fabrication unit.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2010.2098416</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analysis of variance ; Buildings ; Electrical properties ; Indexes ; MANCOVA ; Manufacturing ; Mathematical models ; Metrology ; Nonlinearity ; Principal component analysis ; Screening ; Semiconductor device modeling ; semiconductor manufacturing ; Semiconductors ; Sensors ; Studies ; virtual metrology ; wafer acceptance test ; Wafers</subject><ispartof>IEEE transactions on industrial informatics, 2011-05, Vol.7 (2), p.187-195</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2011</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-af5884da7cc0b67cbe4be71e5fe98c2b111e967bc95887827584240503fedaaf3</citedby><cites>FETCH-LOGICAL-c322t-af5884da7cc0b67cbe4be71e5fe98c2b111e967bc95887827584240503fedaaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5692873$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5692873$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tian-Hong Pan</creatorcontrib><creatorcontrib>Bi-Qi Sheng</creatorcontrib><creatorcontrib>Wong, D S-H</creatorcontrib><creatorcontrib>Shi-Shang Jang</creatorcontrib><title>A Virtual Metrology System for Predicting End-of-Line Electrical Properties Using a MANCOVA Model With Tools Clustering</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>The ability to predict end-of-line electrical properties of wafer in semiconductor manufacturing processes is critical to developing and maintaining a high yield. However, this is difficult because an advanced wafer manufacturing process consists of 300-400 steps, and in-line metrology data is only available for a few steps and for infrequently sampled wafers. Although a large amount of equipment sensor outputs are readily available for most wafers, most of the sensor variables may not be related to the end-of-line properties. Further, differences in end-of-line properties of wafers processed by tools of the same stage do not imply differences in the values of sensor variables between these tools. Thus, it is important to develop a reliable screening and model building procedure to construct a robust virtual metrology model with good generalization capability. Despite its simplicity, this approach is found to have significantly better generalization capability than nonlinear models, as well as substantial improvement in modeling and prediction capabilities of linear models that use only in-line metrology. The proposed method is also evaluated by an industrial application in a local fabrication unit.</description><subject>Analysis of variance</subject><subject>Buildings</subject><subject>Electrical properties</subject><subject>Indexes</subject><subject>MANCOVA</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Metrology</subject><subject>Nonlinearity</subject><subject>Principal component analysis</subject><subject>Screening</subject><subject>Semiconductor device modeling</subject><subject>semiconductor manufacturing</subject><subject>Semiconductors</subject><subject>Sensors</subject><subject>Studies</subject><subject>virtual metrology</subject><subject>wafer acceptance test</subject><subject>Wafers</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1rGzEQhpeQQj7ae6EXkUtOm-prV9LRGCc12E2gTnoUWu1sqiCvHElL8L-PjEMOPc0MPO8ww1NV3wm-IQSrn5vl8obiMlGsJCftSXVOFCc1xg0-LX3TkJpRzM6qi5ReMGYCM3Vevc3Qk4t5Mh6tIcfgw_Me_dmnDFs0hIgeIvTOZjc-o8XY12GoV24EtPBgc3S2xB5i2EHMDhJ6TAfOoPXs9_z-aYbWoQeP_rr8D21C8AnN_VQ2x0J9rb4Mxif49lEvq8fbxWb-q17d3y3ns1VtGaW5NkMjJe-NsBZ3rbAd8A4EgWYAJS3tCCGgWtFZVTghqWgkp7y8zAbojRnYZXV93LuL4XWClPXWJQvemxHClLSUuG2Z5LiQV_-RL2GKYzlOK8K5aIiSBcJHyMaQUoRB76LbmrjXBOuDB1086IMH_eGhRH4cIw4APvGmVVQKxt4Bl16DlA</recordid><startdate>201105</startdate><enddate>201105</enddate><creator>Tian-Hong Pan</creator><creator>Bi-Qi Sheng</creator><creator>Wong, D S-H</creator><creator>Shi-Shang Jang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201105</creationdate><title>A Virtual Metrology System for Predicting End-of-Line Electrical Properties Using a MANCOVA Model With Tools Clustering</title><author>Tian-Hong Pan ; Bi-Qi Sheng ; Wong, D S-H ; Shi-Shang Jang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-af5884da7cc0b67cbe4be71e5fe98c2b111e967bc95887827584240503fedaaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis of variance</topic><topic>Buildings</topic><topic>Electrical properties</topic><topic>Indexes</topic><topic>MANCOVA</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Metrology</topic><topic>Nonlinearity</topic><topic>Principal component analysis</topic><topic>Screening</topic><topic>Semiconductor device modeling</topic><topic>semiconductor manufacturing</topic><topic>Semiconductors</topic><topic>Sensors</topic><topic>Studies</topic><topic>virtual metrology</topic><topic>wafer acceptance test</topic><topic>Wafers</topic><toplevel>online_resources</toplevel><creatorcontrib>Tian-Hong Pan</creatorcontrib><creatorcontrib>Bi-Qi Sheng</creatorcontrib><creatorcontrib>Wong, D S-H</creatorcontrib><creatorcontrib>Shi-Shang Jang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tian-Hong Pan</au><au>Bi-Qi Sheng</au><au>Wong, D S-H</au><au>Shi-Shang Jang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Virtual Metrology System for Predicting End-of-Line Electrical Properties Using a MANCOVA Model With Tools Clustering</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2011-05</date><risdate>2011</risdate><volume>7</volume><issue>2</issue><spage>187</spage><epage>195</epage><pages>187-195</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>The ability to predict end-of-line electrical properties of wafer in semiconductor manufacturing processes is critical to developing and maintaining a high yield. However, this is difficult because an advanced wafer manufacturing process consists of 300-400 steps, and in-line metrology data is only available for a few steps and for infrequently sampled wafers. Although a large amount of equipment sensor outputs are readily available for most wafers, most of the sensor variables may not be related to the end-of-line properties. Further, differences in end-of-line properties of wafers processed by tools of the same stage do not imply differences in the values of sensor variables between these tools. Thus, it is important to develop a reliable screening and model building procedure to construct a robust virtual metrology model with good generalization capability. Despite its simplicity, this approach is found to have significantly better generalization capability than nonlinear models, as well as substantial improvement in modeling and prediction capabilities of linear models that use only in-line metrology. The proposed method is also evaluated by an industrial application in a local fabrication unit.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2010.2098416</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2011-05, Vol.7 (2), p.187-195 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_ieee_primary_5692873 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Analysis of variance Buildings Electrical properties Indexes MANCOVA Manufacturing Mathematical models Metrology Nonlinearity Principal component analysis Screening Semiconductor device modeling semiconductor manufacturing Semiconductors Sensors Studies virtual metrology wafer acceptance test Wafers |
title | A Virtual Metrology System for Predicting End-of-Line Electrical Properties Using a MANCOVA Model With Tools Clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A16%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Virtual%20Metrology%20System%20for%20Predicting%20End-of-Line%20Electrical%20Properties%20Using%20a%20MANCOVA%20Model%20With%20Tools%20Clustering&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Tian-Hong%20Pan&rft.date=2011-05&rft.volume=7&rft.issue=2&rft.spage=187&rft.epage=195&rft.pages=187-195&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2010.2098416&rft_dat=%3Cproquest_RIE%3E2554883021%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914475198&rft_id=info:pmid/&rft_ieee_id=5692873&rfr_iscdi=true |