Unsupervised image change detection means based on 2-D entropy
In this paper, a novel image change detection means based on 2-D histogram formed by pixel gray levels and the local average gray levels is proposed. First, the 2-D histogram is segmented by a line passing through the diagonal of 2-D histogram in a certain direction. Second, the improved 2-D entropy...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4202 |
---|---|
container_issue | |
container_start_page | 4199 |
container_title | |
container_volume | |
creator | Wenbang Sun Hexin Chen Haiyan Tang Yu Liu |
description | In this paper, a novel image change detection means based on 2-D histogram formed by pixel gray levels and the local average gray levels is proposed. First, the 2-D histogram is segmented by a line passing through the diagonal of 2-D histogram in a certain direction. Second, the improved 2-D entropy is defined to acquire the optimal segmentation direction and the optimal threshold. And the 2-D histogram is segmented into unchanged region and change region. Then the change area is detected based on the change region of 2-D histogram. Finally, the change detection means is compared to traditional means Theoretical analysis and experiment result show that this algorithm is more accurate on detection precision and faster on detection speed. |
doi_str_mv | 10.1109/ICISE.2010.5691145 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5691145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5691145</ieee_id><sourcerecordid>5691145</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-660b591c943dcdd1cb23d9940fce213303eb8e508658050b830b7e9618f2d1443</originalsourceid><addsrcrecordid>eNpFj81Kw0AUhUdUsK19Ad3MC6TeO3-Z2QgSqwYKXVjBXcnM3GjEpiEThb69EQuuDh8cDudj7AphgQjupizK5-VCwMjaOESlT9gUlVAqN2jN6T-Y1zM2EWggQ2HlBZun9AEAEnMLKp-w25c2fXXUfzeJIm921Rvx8F61Y0QaKAzNvuU7qtrEffVbGVFk95zaod93h0t2XlefiebHnLHNw3JTPGWr9WNZ3K2yxsGQGQNeOwxOyRhixOCFjM4pqAMJlBIkeUsarNEWNHgrwefkRpVaRFRKztj132xDRNuuH3_2h-1RXf4ALLNJtg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Unsupervised image change detection means based on 2-D entropy</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wenbang Sun ; Hexin Chen ; Haiyan Tang ; Yu Liu</creator><creatorcontrib>Wenbang Sun ; Hexin Chen ; Haiyan Tang ; Yu Liu</creatorcontrib><description>In this paper, a novel image change detection means based on 2-D histogram formed by pixel gray levels and the local average gray levels is proposed. First, the 2-D histogram is segmented by a line passing through the diagonal of 2-D histogram in a certain direction. Second, the improved 2-D entropy is defined to acquire the optimal segmentation direction and the optimal threshold. And the 2-D histogram is segmented into unchanged region and change region. Then the change area is detected based on the change region of 2-D histogram. Finally, the change detection means is compared to traditional means Theoretical analysis and experiment result show that this algorithm is more accurate on detection precision and faster on detection speed.</description><identifier>ISSN: 2160-1283</identifier><identifier>ISBN: 142447616X</identifier><identifier>ISBN: 9781424476169</identifier><identifier>EISBN: 1424476186</identifier><identifier>EISBN: 9781424476176</identifier><identifier>EISBN: 1424476178</identifier><identifier>EISBN: 9781424476183</identifier><identifier>DOI: 10.1109/ICISE.2010.5691145</identifier><language>eng</language><publisher>IEEE</publisher><subject>2-D entropy ; 2-D histogram ; Change detection ; Entropy ; Equations ; Histograms ; Image edge detection ; Image segmentation ; Noise ; Pixel</subject><ispartof>The 2nd International Conference on Information Science and Engineering, 2010, p.4199-4202</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5691145$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5691145$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wenbang Sun</creatorcontrib><creatorcontrib>Hexin Chen</creatorcontrib><creatorcontrib>Haiyan Tang</creatorcontrib><creatorcontrib>Yu Liu</creatorcontrib><title>Unsupervised image change detection means based on 2-D entropy</title><title>The 2nd International Conference on Information Science and Engineering</title><addtitle>ICISE</addtitle><description>In this paper, a novel image change detection means based on 2-D histogram formed by pixel gray levels and the local average gray levels is proposed. First, the 2-D histogram is segmented by a line passing through the diagonal of 2-D histogram in a certain direction. Second, the improved 2-D entropy is defined to acquire the optimal segmentation direction and the optimal threshold. And the 2-D histogram is segmented into unchanged region and change region. Then the change area is detected based on the change region of 2-D histogram. Finally, the change detection means is compared to traditional means Theoretical analysis and experiment result show that this algorithm is more accurate on detection precision and faster on detection speed.</description><subject>2-D entropy</subject><subject>2-D histogram</subject><subject>Change detection</subject><subject>Entropy</subject><subject>Equations</subject><subject>Histograms</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Noise</subject><subject>Pixel</subject><issn>2160-1283</issn><isbn>142447616X</isbn><isbn>9781424476169</isbn><isbn>1424476186</isbn><isbn>9781424476176</isbn><isbn>1424476178</isbn><isbn>9781424476183</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj81Kw0AUhUdUsK19Ad3MC6TeO3-Z2QgSqwYKXVjBXcnM3GjEpiEThb69EQuuDh8cDudj7AphgQjupizK5-VCwMjaOESlT9gUlVAqN2jN6T-Y1zM2EWggQ2HlBZun9AEAEnMLKp-w25c2fXXUfzeJIm921Rvx8F61Y0QaKAzNvuU7qtrEffVbGVFk95zaod93h0t2XlefiebHnLHNw3JTPGWr9WNZ3K2yxsGQGQNeOwxOyRhixOCFjM4pqAMJlBIkeUsarNEWNHgrwefkRpVaRFRKztj132xDRNuuH3_2h-1RXf4ALLNJtg</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Wenbang Sun</creator><creator>Hexin Chen</creator><creator>Haiyan Tang</creator><creator>Yu Liu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201012</creationdate><title>Unsupervised image change detection means based on 2-D entropy</title><author>Wenbang Sun ; Hexin Chen ; Haiyan Tang ; Yu Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-660b591c943dcdd1cb23d9940fce213303eb8e508658050b830b7e9618f2d1443</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>2-D entropy</topic><topic>2-D histogram</topic><topic>Change detection</topic><topic>Entropy</topic><topic>Equations</topic><topic>Histograms</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Noise</topic><topic>Pixel</topic><toplevel>online_resources</toplevel><creatorcontrib>Wenbang Sun</creatorcontrib><creatorcontrib>Hexin Chen</creatorcontrib><creatorcontrib>Haiyan Tang</creatorcontrib><creatorcontrib>Yu Liu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wenbang Sun</au><au>Hexin Chen</au><au>Haiyan Tang</au><au>Yu Liu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Unsupervised image change detection means based on 2-D entropy</atitle><btitle>The 2nd International Conference on Information Science and Engineering</btitle><stitle>ICISE</stitle><date>2010-12</date><risdate>2010</risdate><spage>4199</spage><epage>4202</epage><pages>4199-4202</pages><issn>2160-1283</issn><isbn>142447616X</isbn><isbn>9781424476169</isbn><eisbn>1424476186</eisbn><eisbn>9781424476176</eisbn><eisbn>1424476178</eisbn><eisbn>9781424476183</eisbn><abstract>In this paper, a novel image change detection means based on 2-D histogram formed by pixel gray levels and the local average gray levels is proposed. First, the 2-D histogram is segmented by a line passing through the diagonal of 2-D histogram in a certain direction. Second, the improved 2-D entropy is defined to acquire the optimal segmentation direction and the optimal threshold. And the 2-D histogram is segmented into unchanged region and change region. Then the change area is detected based on the change region of 2-D histogram. Finally, the change detection means is compared to traditional means Theoretical analysis and experiment result show that this algorithm is more accurate on detection precision and faster on detection speed.</abstract><pub>IEEE</pub><doi>10.1109/ICISE.2010.5691145</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2160-1283 |
ispartof | The 2nd International Conference on Information Science and Engineering, 2010, p.4199-4202 |
issn | 2160-1283 |
language | eng |
recordid | cdi_ieee_primary_5691145 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | 2-D entropy 2-D histogram Change detection Entropy Equations Histograms Image edge detection Image segmentation Noise Pixel |
title | Unsupervised image change detection means based on 2-D entropy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A49%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Unsupervised%20image%20change%20detection%20means%20based%20on%202-D%20entropy&rft.btitle=The%202nd%20International%20Conference%20on%20Information%20Science%20and%20Engineering&rft.au=Wenbang%20Sun&rft.date=2010-12&rft.spage=4199&rft.epage=4202&rft.pages=4199-4202&rft.issn=2160-1283&rft.isbn=142447616X&rft.isbn_list=9781424476169&rft_id=info:doi/10.1109/ICISE.2010.5691145&rft_dat=%3Cieee_6IE%3E5691145%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424476186&rft.eisbn_list=9781424476176&rft.eisbn_list=1424476178&rft.eisbn_list=9781424476183&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5691145&rfr_iscdi=true |