Spectro-tomography interpretation for integrated sensing of process component identification and distribution

New developments are described that augment the recently introduced electrical sensing technology of industrial process tomography (applicable to a wide range of industrial processes) with methods for the identification of materials in the contrast-sensed distribution. Advances are set in the contex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nahvi, Manoochehr, Hoyle, Brian S
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1312
container_issue
container_start_page 1309
container_title
container_volume
creator Nahvi, Manoochehr
Hoyle, Brian S
description New developments are described that augment the recently introduced electrical sensing technology of industrial process tomography (applicable to a wide range of industrial processes) with methods for the identification of materials in the contrast-sensed distribution. Advances are set in the context of current technology, where results are typically limited intrinsically by single frequency excitation. Previous extensions to the platform technology have provided a spectroscopic dimension, using wideband excitation and associated detection technique, to deliver a raw spectro-tomogram dataset. Two methods and test results are described which add the capability to interpret this raw dataset to identify process components: a simply implemented look-up table (LUT) method able to identify known and distinct 'spectral fingerprints'; and a more computationally intensive model-fitting method that can tolerate components that are similar in their spectrographic response.
doi_str_mv 10.1109/ICSENS.2010.5690578
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5690578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5690578</ieee_id><sourcerecordid>5690578</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f7d2423d7bc68e018740da779aafccdbb3ae1abdb02c1cd0f18b7b238633a573</originalsourceid><addsrcrecordid>eNotkEtPAjEAhOsrEZBfwKV_YLGP7bY9GoJIQvQAd9In1rjtpq0H_r2rcJlJvsnMYQBYYLTEGMnn7Wq_ft8vCRoB6yRiXNyAKW5J2wrcie4WTMjojSRE3oG55OKaccTuwQRLihpEJXsE01K-ECKIETEB_X5wpubU1NSnU1bD5xmGWF0esquqhhShT_kfjWl1FhYXS4gnmDwccjKuFGhSP6ToYoXBjhp8MJeqihbaUGoO-ucPPIEHr76Lm199Bg6v68Pqrdl9bLarl10TMGe18dySllDLtemEQ1jwFlnFuVTKG2O1psphpa1GxGBjkcdCc02o6ChVjNMZWFxmg3PuOOTQq3w-Xl-jvxQgYZQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spectro-tomography interpretation for integrated sensing of process component identification and distribution</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nahvi, Manoochehr ; Hoyle, Brian S</creator><creatorcontrib>Nahvi, Manoochehr ; Hoyle, Brian S</creatorcontrib><description>New developments are described that augment the recently introduced electrical sensing technology of industrial process tomography (applicable to a wide range of industrial processes) with methods for the identification of materials in the contrast-sensed distribution. Advances are set in the context of current technology, where results are typically limited intrinsically by single frequency excitation. Previous extensions to the platform technology have provided a spectroscopic dimension, using wideband excitation and associated detection technique, to deliver a raw spectro-tomogram dataset. Two methods and test results are described which add the capability to interpret this raw dataset to identify process components: a simply implemented look-up table (LUT) method able to identify known and distinct 'spectral fingerprints'; and a more computationally intensive model-fitting method that can tolerate components that are similar in their spectrographic response.</description><identifier>ISSN: 1930-0395</identifier><identifier>ISBN: 9781424481705</identifier><identifier>ISBN: 1424481708</identifier><identifier>EISSN: 2168-9229</identifier><identifier>EISBN: 1424481686</identifier><identifier>EISBN: 9781424481682</identifier><identifier>EISBN: 9781424481699</identifier><identifier>EISBN: 1424481694</identifier><identifier>DOI: 10.1109/ICSENS.2010.5690578</identifier><language>eng</language><publisher>IEEE</publisher><subject>Image reconstruction ; Impedance ; Materials ; Pharmaceuticals ; Sensors ; Tomography ; Wideband</subject><ispartof>2010 IEEE Sensors, 2010, p.1309-1312</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5690578$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5690578$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nahvi, Manoochehr</creatorcontrib><creatorcontrib>Hoyle, Brian S</creatorcontrib><title>Spectro-tomography interpretation for integrated sensing of process component identification and distribution</title><title>2010 IEEE Sensors</title><addtitle>ICSENS</addtitle><description>New developments are described that augment the recently introduced electrical sensing technology of industrial process tomography (applicable to a wide range of industrial processes) with methods for the identification of materials in the contrast-sensed distribution. Advances are set in the context of current technology, where results are typically limited intrinsically by single frequency excitation. Previous extensions to the platform technology have provided a spectroscopic dimension, using wideband excitation and associated detection technique, to deliver a raw spectro-tomogram dataset. Two methods and test results are described which add the capability to interpret this raw dataset to identify process components: a simply implemented look-up table (LUT) method able to identify known and distinct 'spectral fingerprints'; and a more computationally intensive model-fitting method that can tolerate components that are similar in their spectrographic response.</description><subject>Image reconstruction</subject><subject>Impedance</subject><subject>Materials</subject><subject>Pharmaceuticals</subject><subject>Sensors</subject><subject>Tomography</subject><subject>Wideband</subject><issn>1930-0395</issn><issn>2168-9229</issn><isbn>9781424481705</isbn><isbn>1424481708</isbn><isbn>1424481686</isbn><isbn>9781424481682</isbn><isbn>9781424481699</isbn><isbn>1424481694</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkEtPAjEAhOsrEZBfwKV_YLGP7bY9GoJIQvQAd9In1rjtpq0H_r2rcJlJvsnMYQBYYLTEGMnn7Wq_ft8vCRoB6yRiXNyAKW5J2wrcie4WTMjojSRE3oG55OKaccTuwQRLihpEJXsE01K-ECKIETEB_X5wpubU1NSnU1bD5xmGWF0esquqhhShT_kfjWl1FhYXS4gnmDwccjKuFGhSP6ToYoXBjhp8MJeqihbaUGoO-ucPPIEHr76Lm199Bg6v68Pqrdl9bLarl10TMGe18dySllDLtemEQ1jwFlnFuVTKG2O1psphpa1GxGBjkcdCc02o6ChVjNMZWFxmg3PuOOTQq3w-Xl-jvxQgYZQ</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Nahvi, Manoochehr</creator><creator>Hoyle, Brian S</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201011</creationdate><title>Spectro-tomography interpretation for integrated sensing of process component identification and distribution</title><author>Nahvi, Manoochehr ; Hoyle, Brian S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f7d2423d7bc68e018740da779aafccdbb3ae1abdb02c1cd0f18b7b238633a573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Image reconstruction</topic><topic>Impedance</topic><topic>Materials</topic><topic>Pharmaceuticals</topic><topic>Sensors</topic><topic>Tomography</topic><topic>Wideband</topic><toplevel>online_resources</toplevel><creatorcontrib>Nahvi, Manoochehr</creatorcontrib><creatorcontrib>Hoyle, Brian S</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nahvi, Manoochehr</au><au>Hoyle, Brian S</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spectro-tomography interpretation for integrated sensing of process component identification and distribution</atitle><btitle>2010 IEEE Sensors</btitle><stitle>ICSENS</stitle><date>2010-11</date><risdate>2010</risdate><spage>1309</spage><epage>1312</epage><pages>1309-1312</pages><issn>1930-0395</issn><eissn>2168-9229</eissn><isbn>9781424481705</isbn><isbn>1424481708</isbn><eisbn>1424481686</eisbn><eisbn>9781424481682</eisbn><eisbn>9781424481699</eisbn><eisbn>1424481694</eisbn><abstract>New developments are described that augment the recently introduced electrical sensing technology of industrial process tomography (applicable to a wide range of industrial processes) with methods for the identification of materials in the contrast-sensed distribution. Advances are set in the context of current technology, where results are typically limited intrinsically by single frequency excitation. Previous extensions to the platform technology have provided a spectroscopic dimension, using wideband excitation and associated detection technique, to deliver a raw spectro-tomogram dataset. Two methods and test results are described which add the capability to interpret this raw dataset to identify process components: a simply implemented look-up table (LUT) method able to identify known and distinct 'spectral fingerprints'; and a more computationally intensive model-fitting method that can tolerate components that are similar in their spectrographic response.</abstract><pub>IEEE</pub><doi>10.1109/ICSENS.2010.5690578</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1930-0395
ispartof 2010 IEEE Sensors, 2010, p.1309-1312
issn 1930-0395
2168-9229
language eng
recordid cdi_ieee_primary_5690578
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Image reconstruction
Impedance
Materials
Pharmaceuticals
Sensors
Tomography
Wideband
title Spectro-tomography interpretation for integrated sensing of process component identification and distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spectro-tomography%20interpretation%20for%20integrated%20sensing%20of%20process%20component%20identification%20and%20distribution&rft.btitle=2010%20IEEE%20Sensors&rft.au=Nahvi,%20Manoochehr&rft.date=2010-11&rft.spage=1309&rft.epage=1312&rft.pages=1309-1312&rft.issn=1930-0395&rft.eissn=2168-9229&rft.isbn=9781424481705&rft.isbn_list=1424481708&rft_id=info:doi/10.1109/ICSENS.2010.5690578&rft_dat=%3Cieee_6IE%3E5690578%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424481686&rft.eisbn_list=9781424481682&rft.eisbn_list=9781424481699&rft.eisbn_list=1424481694&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5690578&rfr_iscdi=true