Serial configuration of genetic algorithm and particle swarm optimization to increase the convergence speed and accuracy

Genetic algorithm and particle swarm optimization are two methods which can be used to find the global extremum of cost functions. The solely performance of each method and their specific characteristics in finding the global extremum have been giving the idea of hybridization of these two methods t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alizadeh, Gh, Baradarannia, M, Yazdizadeh, P, Alipouri, Y
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 277
container_issue
container_start_page 272
container_title
container_volume
creator Alizadeh, Gh
Baradarannia, M
Yazdizadeh, P
Alipouri, Y
description Genetic algorithm and particle swarm optimization are two methods which can be used to find the global extremum of cost functions. The solely performance of each method and their specific characteristics in finding the global extremum have been giving the idea of hybridization of these two methods to many researchers. In this paper a new hybrid algorithm named Serial Genetic Algorithm and Particle Swarm Optimization (SGAPSO) is introduced and the configuration of the algorithm is discussed in details. A set of benchmark cost functions consisted of high dimensional, multimodal and low dimensional cost functions is used to compare the results of proposed method with some other known algorithms such as original genetic algorithm, stud genetic algorithm, jumping gene method, original particle swarm optimization, and classical and fast evolutionary programming. The simulation results show that by using the SGAPSO, the number of generations and cost function evaluations, as two criteria for comparison different algorithms, to reach the global minimum reduce significantly and the convergence speed and accuracy of the algorithm increase.
doi_str_mv 10.1109/ISDA.2010.5687252
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5687252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5687252</ieee_id><sourcerecordid>5687252</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-59e50d2a6482c9353aef3a50d7e675e8d967eeffaf08e73c2379c757b8f4d40c3</originalsourceid><addsrcrecordid>eNpFkMlOAzEQRM0mEUI-AHHxD0zwOraPUdgiReKQ3CPjaSdGs8ljlvD1GIjg1Kqq7ldSI3RFyZRSYm4Wq9vZlJEsZakVk-wIXVDBhNCUl_oYjRgtRaGopCf_gaCnf4Hg52gyDC-EZIgy2qgR-lhBDLbGrmt92L5Gm0LX4s7jLbSQgsO23nYxpF2DbVvh3sZs1oCHdxsb3PUpNOHz9yh1OLQugh0Apx18I98gZo7L6z1A9UOwzuUWt79EZ97WA0wOc4zW93fr-WOxfHpYzGfLIhiSCmlAkorZUmjmDJfcguc2WwpKJUFXplQA3ltPNCjuGFfGKametReVII6P0fUvNgDApo-hsXG_OTyQfwHSs2M5</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Serial configuration of genetic algorithm and particle swarm optimization to increase the convergence speed and accuracy</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Alizadeh, Gh ; Baradarannia, M ; Yazdizadeh, P ; Alipouri, Y</creator><creatorcontrib>Alizadeh, Gh ; Baradarannia, M ; Yazdizadeh, P ; Alipouri, Y</creatorcontrib><description>Genetic algorithm and particle swarm optimization are two methods which can be used to find the global extremum of cost functions. The solely performance of each method and their specific characteristics in finding the global extremum have been giving the idea of hybridization of these two methods to many researchers. In this paper a new hybrid algorithm named Serial Genetic Algorithm and Particle Swarm Optimization (SGAPSO) is introduced and the configuration of the algorithm is discussed in details. A set of benchmark cost functions consisted of high dimensional, multimodal and low dimensional cost functions is used to compare the results of proposed method with some other known algorithms such as original genetic algorithm, stud genetic algorithm, jumping gene method, original particle swarm optimization, and classical and fast evolutionary programming. The simulation results show that by using the SGAPSO, the number of generations and cost function evaluations, as two criteria for comparison different algorithms, to reach the global minimum reduce significantly and the convergence speed and accuracy of the algorithm increase.</description><identifier>ISSN: 2164-7143</identifier><identifier>ISBN: 1424481341</identifier><identifier>ISBN: 9781424481347</identifier><identifier>EISSN: 2164-7151</identifier><identifier>EISBN: 1424481368</identifier><identifier>EISBN: 142448135X</identifier><identifier>EISBN: 9781424481361</identifier><identifier>EISBN: 9781424481354</identifier><identifier>DOI: 10.1109/ISDA.2010.5687252</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; Convergence ; Cost function ; Gallium ; Genetic algorithms ; hybrid evolutionary algorithm ; increasing accuracy ; increasing convergence speed ; Particle swarm optimization ; serial genetic algorithm and particle swarm optimization</subject><ispartof>2010 10th International Conference on Intelligent Systems Design and Applications, 2010, p.272-277</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5687252$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5687252$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alizadeh, Gh</creatorcontrib><creatorcontrib>Baradarannia, M</creatorcontrib><creatorcontrib>Yazdizadeh, P</creatorcontrib><creatorcontrib>Alipouri, Y</creatorcontrib><title>Serial configuration of genetic algorithm and particle swarm optimization to increase the convergence speed and accuracy</title><title>2010 10th International Conference on Intelligent Systems Design and Applications</title><addtitle>ISDA</addtitle><description>Genetic algorithm and particle swarm optimization are two methods which can be used to find the global extremum of cost functions. The solely performance of each method and their specific characteristics in finding the global extremum have been giving the idea of hybridization of these two methods to many researchers. In this paper a new hybrid algorithm named Serial Genetic Algorithm and Particle Swarm Optimization (SGAPSO) is introduced and the configuration of the algorithm is discussed in details. A set of benchmark cost functions consisted of high dimensional, multimodal and low dimensional cost functions is used to compare the results of proposed method with some other known algorithms such as original genetic algorithm, stud genetic algorithm, jumping gene method, original particle swarm optimization, and classical and fast evolutionary programming. The simulation results show that by using the SGAPSO, the number of generations and cost function evaluations, as two criteria for comparison different algorithms, to reach the global minimum reduce significantly and the convergence speed and accuracy of the algorithm increase.</description><subject>Biological cells</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Gallium</subject><subject>Genetic algorithms</subject><subject>hybrid evolutionary algorithm</subject><subject>increasing accuracy</subject><subject>increasing convergence speed</subject><subject>Particle swarm optimization</subject><subject>serial genetic algorithm and particle swarm optimization</subject><issn>2164-7143</issn><issn>2164-7151</issn><isbn>1424481341</isbn><isbn>9781424481347</isbn><isbn>1424481368</isbn><isbn>142448135X</isbn><isbn>9781424481361</isbn><isbn>9781424481354</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMlOAzEQRM0mEUI-AHHxD0zwOraPUdgiReKQ3CPjaSdGs8ljlvD1GIjg1Kqq7ldSI3RFyZRSYm4Wq9vZlJEsZakVk-wIXVDBhNCUl_oYjRgtRaGopCf_gaCnf4Hg52gyDC-EZIgy2qgR-lhBDLbGrmt92L5Gm0LX4s7jLbSQgsO23nYxpF2DbVvh3sZs1oCHdxsb3PUpNOHz9yh1OLQugh0Apx18I98gZo7L6z1A9UOwzuUWt79EZ97WA0wOc4zW93fr-WOxfHpYzGfLIhiSCmlAkorZUmjmDJfcguc2WwpKJUFXplQA3ltPNCjuGFfGKametReVII6P0fUvNgDApo-hsXG_OTyQfwHSs2M5</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Alizadeh, Gh</creator><creator>Baradarannia, M</creator><creator>Yazdizadeh, P</creator><creator>Alipouri, Y</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201011</creationdate><title>Serial configuration of genetic algorithm and particle swarm optimization to increase the convergence speed and accuracy</title><author>Alizadeh, Gh ; Baradarannia, M ; Yazdizadeh, P ; Alipouri, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-59e50d2a6482c9353aef3a50d7e675e8d967eeffaf08e73c2379c757b8f4d40c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological cells</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Gallium</topic><topic>Genetic algorithms</topic><topic>hybrid evolutionary algorithm</topic><topic>increasing accuracy</topic><topic>increasing convergence speed</topic><topic>Particle swarm optimization</topic><topic>serial genetic algorithm and particle swarm optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Alizadeh, Gh</creatorcontrib><creatorcontrib>Baradarannia, M</creatorcontrib><creatorcontrib>Yazdizadeh, P</creatorcontrib><creatorcontrib>Alipouri, Y</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alizadeh, Gh</au><au>Baradarannia, M</au><au>Yazdizadeh, P</au><au>Alipouri, Y</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Serial configuration of genetic algorithm and particle swarm optimization to increase the convergence speed and accuracy</atitle><btitle>2010 10th International Conference on Intelligent Systems Design and Applications</btitle><stitle>ISDA</stitle><date>2010-11</date><risdate>2010</risdate><spage>272</spage><epage>277</epage><pages>272-277</pages><issn>2164-7143</issn><eissn>2164-7151</eissn><isbn>1424481341</isbn><isbn>9781424481347</isbn><eisbn>1424481368</eisbn><eisbn>142448135X</eisbn><eisbn>9781424481361</eisbn><eisbn>9781424481354</eisbn><abstract>Genetic algorithm and particle swarm optimization are two methods which can be used to find the global extremum of cost functions. The solely performance of each method and their specific characteristics in finding the global extremum have been giving the idea of hybridization of these two methods to many researchers. In this paper a new hybrid algorithm named Serial Genetic Algorithm and Particle Swarm Optimization (SGAPSO) is introduced and the configuration of the algorithm is discussed in details. A set of benchmark cost functions consisted of high dimensional, multimodal and low dimensional cost functions is used to compare the results of proposed method with some other known algorithms such as original genetic algorithm, stud genetic algorithm, jumping gene method, original particle swarm optimization, and classical and fast evolutionary programming. The simulation results show that by using the SGAPSO, the number of generations and cost function evaluations, as two criteria for comparison different algorithms, to reach the global minimum reduce significantly and the convergence speed and accuracy of the algorithm increase.</abstract><pub>IEEE</pub><doi>10.1109/ISDA.2010.5687252</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2164-7143
ispartof 2010 10th International Conference on Intelligent Systems Design and Applications, 2010, p.272-277
issn 2164-7143
2164-7151
language eng
recordid cdi_ieee_primary_5687252
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological cells
Convergence
Cost function
Gallium
Genetic algorithms
hybrid evolutionary algorithm
increasing accuracy
increasing convergence speed
Particle swarm optimization
serial genetic algorithm and particle swarm optimization
title Serial configuration of genetic algorithm and particle swarm optimization to increase the convergence speed and accuracy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A50%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Serial%20configuration%20of%20genetic%20algorithm%20and%20particle%20swarm%20optimization%20to%20increase%20the%20convergence%20speed%20and%20accuracy&rft.btitle=2010%2010th%20International%20Conference%20on%20Intelligent%20Systems%20Design%20and%20Applications&rft.au=Alizadeh,%20Gh&rft.date=2010-11&rft.spage=272&rft.epage=277&rft.pages=272-277&rft.issn=2164-7143&rft.eissn=2164-7151&rft.isbn=1424481341&rft.isbn_list=9781424481347&rft_id=info:doi/10.1109/ISDA.2010.5687252&rft_dat=%3Cieee_6IE%3E5687252%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424481368&rft.eisbn_list=142448135X&rft.eisbn_list=9781424481361&rft.eisbn_list=9781424481354&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5687252&rfr_iscdi=true