Small-scale helicopter system identification model using recurrent neural networks

Designing a reliable flight control for an autonomous helicopter requires a high performance dynamics model. This paper studies the recurrent neural network nonlinear model identification of a small scale helicopter. We have selected a Nonlinear AutoRegressive with eXogenous Inputs SeriesParallel (N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Taha, Zahari, Deboucha, Abdelhakim, Bin Dahari, Mahidzal
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1397
container_issue
container_start_page 1393
container_title
container_volume
creator Taha, Zahari
Deboucha, Abdelhakim
Bin Dahari, Mahidzal
description Designing a reliable flight control for an autonomous helicopter requires a high performance dynamics model. This paper studies the recurrent neural network nonlinear model identification of a small scale helicopter. We have selected a Nonlinear AutoRegressive with eXogenous Inputs SeriesParallel (NARXSP) network model which identifies the dynamics model of an unmanned aerial helicopter from real flight data. The identification process is conducted by using the well known Levenberg-Marquardt learning algorithm. The obtained dynamics model shows good fitness with the actual data. This accuracy might be used to realize a reliable flight control for an autonomous helicopter.
doi_str_mv 10.1109/TENCON.2010.5686070
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5686070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5686070</ieee_id><sourcerecordid>5686070</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-82852dbc26cb20586dbc09b68af6f43c88cf2d444df75c3b4c96467aaea394153</originalsourceid><addsrcrecordid>eNo9kMtOwzAURM1LopR-QTf-gRTbuXaulygqD6lqJSjrynEcMDhJZadC_XsiUZjNjOZIsxhC5pwtOGf6brtcl5v1QrCxkAoVK9gZueEgABQiwjmZCC51loNkF2SmC_xjGi__GYhrMkvpk41STDAsJuTltTUhZMma4OiHC972-8FFmo5pcC31tesG33hrBt93tO1rF-gh-e6dRmcPMY6Ydu4QTRht-O7jV7olV40Jyc1OPiVvD8tt-ZStNo_P5f0q87yQQ4YCpagrK5StBJOoxsx0pdA0qoHcItpG1ABQN4W0eQVWK1CFMc7kGrjMp2T-u-udc7t99K2Jx93pnvwHTiFW1w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Small-scale helicopter system identification model using recurrent neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Taha, Zahari ; Deboucha, Abdelhakim ; Bin Dahari, Mahidzal</creator><creatorcontrib>Taha, Zahari ; Deboucha, Abdelhakim ; Bin Dahari, Mahidzal</creatorcontrib><description>Designing a reliable flight control for an autonomous helicopter requires a high performance dynamics model. This paper studies the recurrent neural network nonlinear model identification of a small scale helicopter. We have selected a Nonlinear AutoRegressive with eXogenous Inputs SeriesParallel (NARXSP) network model which identifies the dynamics model of an unmanned aerial helicopter from real flight data. The identification process is conducted by using the well known Levenberg-Marquardt learning algorithm. The obtained dynamics model shows good fitness with the actual data. This accuracy might be used to realize a reliable flight control for an autonomous helicopter.</description><identifier>ISSN: 2159-3442</identifier><identifier>ISBN: 9781424468898</identifier><identifier>ISBN: 1424468892</identifier><identifier>EISSN: 2159-3450</identifier><identifier>EISBN: 1424468884</identifier><identifier>EISBN: 9781424468881</identifier><identifier>EISBN: 1424468906</identifier><identifier>EISBN: 9781424468904</identifier><identifier>DOI: 10.1109/TENCON.2010.5686070</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Dynamics model ; Helicopters ; Mathematical model ; Nonlinear dynamical systems ; Recurrent Neural Network (RNN) ; Recurrent neural networks ; Small-Scale Helicopter ; System identification ; Vehicle dynamics</subject><ispartof>TENCON 2010 - 2010 IEEE Region 10 Conference, 2010, p.1393-1397</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5686070$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5686070$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Taha, Zahari</creatorcontrib><creatorcontrib>Deboucha, Abdelhakim</creatorcontrib><creatorcontrib>Bin Dahari, Mahidzal</creatorcontrib><title>Small-scale helicopter system identification model using recurrent neural networks</title><title>TENCON 2010 - 2010 IEEE Region 10 Conference</title><addtitle>TENCON</addtitle><description>Designing a reliable flight control for an autonomous helicopter requires a high performance dynamics model. This paper studies the recurrent neural network nonlinear model identification of a small scale helicopter. We have selected a Nonlinear AutoRegressive with eXogenous Inputs SeriesParallel (NARXSP) network model which identifies the dynamics model of an unmanned aerial helicopter from real flight data. The identification process is conducted by using the well known Levenberg-Marquardt learning algorithm. The obtained dynamics model shows good fitness with the actual data. This accuracy might be used to realize a reliable flight control for an autonomous helicopter.</description><subject>Artificial neural networks</subject><subject>Dynamics model</subject><subject>Helicopters</subject><subject>Mathematical model</subject><subject>Nonlinear dynamical systems</subject><subject>Recurrent Neural Network (RNN)</subject><subject>Recurrent neural networks</subject><subject>Small-Scale Helicopter</subject><subject>System identification</subject><subject>Vehicle dynamics</subject><issn>2159-3442</issn><issn>2159-3450</issn><isbn>9781424468898</isbn><isbn>1424468892</isbn><isbn>1424468884</isbn><isbn>9781424468881</isbn><isbn>1424468906</isbn><isbn>9781424468904</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAURM1LopR-QTf-gRTbuXaulygqD6lqJSjrynEcMDhJZadC_XsiUZjNjOZIsxhC5pwtOGf6brtcl5v1QrCxkAoVK9gZueEgABQiwjmZCC51loNkF2SmC_xjGi__GYhrMkvpk41STDAsJuTltTUhZMma4OiHC972-8FFmo5pcC31tesG33hrBt93tO1rF-gh-e6dRmcPMY6Ydu4QTRht-O7jV7olV40Jyc1OPiVvD8tt-ZStNo_P5f0q87yQQ4YCpagrK5StBJOoxsx0pdA0qoHcItpG1ABQN4W0eQVWK1CFMc7kGrjMp2T-u-udc7t99K2Jx93pnvwHTiFW1w</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Taha, Zahari</creator><creator>Deboucha, Abdelhakim</creator><creator>Bin Dahari, Mahidzal</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201011</creationdate><title>Small-scale helicopter system identification model using recurrent neural networks</title><author>Taha, Zahari ; Deboucha, Abdelhakim ; Bin Dahari, Mahidzal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-82852dbc26cb20586dbc09b68af6f43c88cf2d444df75c3b4c96467aaea394153</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>Dynamics model</topic><topic>Helicopters</topic><topic>Mathematical model</topic><topic>Nonlinear dynamical systems</topic><topic>Recurrent Neural Network (RNN)</topic><topic>Recurrent neural networks</topic><topic>Small-Scale Helicopter</topic><topic>System identification</topic><topic>Vehicle dynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Taha, Zahari</creatorcontrib><creatorcontrib>Deboucha, Abdelhakim</creatorcontrib><creatorcontrib>Bin Dahari, Mahidzal</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Taha, Zahari</au><au>Deboucha, Abdelhakim</au><au>Bin Dahari, Mahidzal</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Small-scale helicopter system identification model using recurrent neural networks</atitle><btitle>TENCON 2010 - 2010 IEEE Region 10 Conference</btitle><stitle>TENCON</stitle><date>2010-11</date><risdate>2010</risdate><spage>1393</spage><epage>1397</epage><pages>1393-1397</pages><issn>2159-3442</issn><eissn>2159-3450</eissn><isbn>9781424468898</isbn><isbn>1424468892</isbn><eisbn>1424468884</eisbn><eisbn>9781424468881</eisbn><eisbn>1424468906</eisbn><eisbn>9781424468904</eisbn><abstract>Designing a reliable flight control for an autonomous helicopter requires a high performance dynamics model. This paper studies the recurrent neural network nonlinear model identification of a small scale helicopter. We have selected a Nonlinear AutoRegressive with eXogenous Inputs SeriesParallel (NARXSP) network model which identifies the dynamics model of an unmanned aerial helicopter from real flight data. The identification process is conducted by using the well known Levenberg-Marquardt learning algorithm. The obtained dynamics model shows good fitness with the actual data. This accuracy might be used to realize a reliable flight control for an autonomous helicopter.</abstract><pub>IEEE</pub><doi>10.1109/TENCON.2010.5686070</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2159-3442
ispartof TENCON 2010 - 2010 IEEE Region 10 Conference, 2010, p.1393-1397
issn 2159-3442
2159-3450
language eng
recordid cdi_ieee_primary_5686070
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Dynamics model
Helicopters
Mathematical model
Nonlinear dynamical systems
Recurrent Neural Network (RNN)
Recurrent neural networks
Small-Scale Helicopter
System identification
Vehicle dynamics
title Small-scale helicopter system identification model using recurrent neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Small-scale%20helicopter%20system%20identification%20model%20using%20recurrent%20neural%20networks&rft.btitle=TENCON%202010%20-%202010%20IEEE%20Region%2010%20Conference&rft.au=Taha,%20Zahari&rft.date=2010-11&rft.spage=1393&rft.epage=1397&rft.pages=1393-1397&rft.issn=2159-3442&rft.eissn=2159-3450&rft.isbn=9781424468898&rft.isbn_list=1424468892&rft_id=info:doi/10.1109/TENCON.2010.5686070&rft_dat=%3Cieee_6IE%3E5686070%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424468884&rft.eisbn_list=9781424468881&rft.eisbn_list=1424468906&rft.eisbn_list=9781424468904&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5686070&rfr_iscdi=true