Applying Particle Swarm Optimization to estimate software effort by multiple factors software project clustering
In the IT industry, precisely evaluate the effort of each software development project to develop cost and development schedule management to the software company in the software are count for much. Since a project, majority of development teams will feel time isn't enough to use or the project...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1044 |
---|---|
container_issue | |
container_start_page | 1039 |
container_title | |
container_volume | |
creator | Jin-Cherng Lin Han-Yuan Tzeng |
description | In the IT industry, precisely evaluate the effort of each software development project to develop cost and development schedule management to the software company in the software are count for much. Since a project, majority of development teams will feel time isn't enough to use or the project valuation be false to make the software project failed. However the cost of the software project is almost a manpower cost, manpower cost and then become a direct proportion with development schedule, so precise effort the valuation more seem to be getting more important. Consequently, this research will use Pearson product-moment correlation coefficient and one-way analyze to select several factors then used K-Means clustering algorithm to software project clustering. After project clustering, we use Particle Swarm Optimization that take mean of MRE (MMRE) as a fitness value and N-1 test method to optimization of COCOMO parameters. Finally, take parameters that finsh the optimization to calculate the software project effort that is want to estimation. This research use 63 history software projects data of COCOMO to test. The experiment really expresses using base on project clustering with multiple factors can make more effective base on effort of the estimate software of COCOMO's three project mode. |
doi_str_mv | 10.1109/COMPSYM.2010.5685538 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5685538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5685538</ieee_id><sourcerecordid>5685538</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c7bb954ad97a28a198202e1958406b75c81a269b294b7e0f8487e26af2c450a43</originalsourceid><addsrcrecordid>eNpFUMFKAzEUjIig1n6BHvIDW5NsskmOpagVWlpoL55KNr5IyrYbkhRZv96AC77LY4aZ94ZB6ImSGaVEPy826-3uYz1jpDCiUULU6grdU844lw0n7BpNtVQjrrW6RdOUjqSMYLLW-g6FeQjd4M9feGti9rYDvPs28YQ3IfuT_zHZ92ecewypYJMBp97logAMzvUx43bAp0uXfShWZ2zuY_rXhNgfwWZsu0vKEMufB3TjTJdgOu4J2r--7BfLarV5e1_MV5XXJFdWtq0W3HxqaZgyVCtGGFAtFCdNK4VV1LBGt0zzVgJxiisJrDGOWS6I4fUEPf6d9QBwCLFkj8Nh7Kj-Bb-3Xd4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Applying Particle Swarm Optimization to estimate software effort by multiple factors software project clustering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jin-Cherng Lin ; Han-Yuan Tzeng</creator><creatorcontrib>Jin-Cherng Lin ; Han-Yuan Tzeng</creatorcontrib><description>In the IT industry, precisely evaluate the effort of each software development project to develop cost and development schedule management to the software company in the software are count for much. Since a project, majority of development teams will feel time isn't enough to use or the project valuation be false to make the software project failed. However the cost of the software project is almost a manpower cost, manpower cost and then become a direct proportion with development schedule, so precise effort the valuation more seem to be getting more important. Consequently, this research will use Pearson product-moment correlation coefficient and one-way analyze to select several factors then used K-Means clustering algorithm to software project clustering. After project clustering, we use Particle Swarm Optimization that take mean of MRE (MMRE) as a fitness value and N-1 test method to optimization of COCOMO parameters. Finally, take parameters that finsh the optimization to calculate the software project effort that is want to estimation. This research use 63 history software projects data of COCOMO to test. The experiment really expresses using base on project clustering with multiple factors can make more effective base on effort of the estimate software of COCOMO's three project mode.</description><identifier>ISBN: 9781424476398</identifier><identifier>ISBN: 1424476399</identifier><identifier>EISBN: 1424476402</identifier><identifier>EISBN: 9781424476404</identifier><identifier>EISBN: 1424476380</identifier><identifier>EISBN: 9781424476381</identifier><identifier>DOI: 10.1109/COMPSYM.2010.5685538</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analysis of variance ; Clustering algorithms ; Correlation ; correlation coefficient ; Equations ; Estimation ; K-Means clustering algorithm ; Mathematical model ; Particle Swarm Optimization ; project clustering ; Software ; software effort</subject><ispartof>2010 International Computer Symposium (ICS2010), 2010, p.1039-1044</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5685538$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5685538$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jin-Cherng Lin</creatorcontrib><creatorcontrib>Han-Yuan Tzeng</creatorcontrib><title>Applying Particle Swarm Optimization to estimate software effort by multiple factors software project clustering</title><title>2010 International Computer Symposium (ICS2010)</title><addtitle>COMPSYM</addtitle><description>In the IT industry, precisely evaluate the effort of each software development project to develop cost and development schedule management to the software company in the software are count for much. Since a project, majority of development teams will feel time isn't enough to use or the project valuation be false to make the software project failed. However the cost of the software project is almost a manpower cost, manpower cost and then become a direct proportion with development schedule, so precise effort the valuation more seem to be getting more important. Consequently, this research will use Pearson product-moment correlation coefficient and one-way analyze to select several factors then used K-Means clustering algorithm to software project clustering. After project clustering, we use Particle Swarm Optimization that take mean of MRE (MMRE) as a fitness value and N-1 test method to optimization of COCOMO parameters. Finally, take parameters that finsh the optimization to calculate the software project effort that is want to estimation. This research use 63 history software projects data of COCOMO to test. The experiment really expresses using base on project clustering with multiple factors can make more effective base on effort of the estimate software of COCOMO's three project mode.</description><subject>Analysis of variance</subject><subject>Clustering algorithms</subject><subject>Correlation</subject><subject>correlation coefficient</subject><subject>Equations</subject><subject>Estimation</subject><subject>K-Means clustering algorithm</subject><subject>Mathematical model</subject><subject>Particle Swarm Optimization</subject><subject>project clustering</subject><subject>Software</subject><subject>software effort</subject><isbn>9781424476398</isbn><isbn>1424476399</isbn><isbn>1424476402</isbn><isbn>9781424476404</isbn><isbn>1424476380</isbn><isbn>9781424476381</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUMFKAzEUjIig1n6BHvIDW5NsskmOpagVWlpoL55KNr5IyrYbkhRZv96AC77LY4aZ94ZB6ImSGaVEPy826-3uYz1jpDCiUULU6grdU844lw0n7BpNtVQjrrW6RdOUjqSMYLLW-g6FeQjd4M9feGti9rYDvPs28YQ3IfuT_zHZ92ecewypYJMBp97logAMzvUx43bAp0uXfShWZ2zuY_rXhNgfwWZsu0vKEMufB3TjTJdgOu4J2r--7BfLarV5e1_MV5XXJFdWtq0W3HxqaZgyVCtGGFAtFCdNK4VV1LBGt0zzVgJxiisJrDGOWS6I4fUEPf6d9QBwCLFkj8Nh7Kj-Bb-3Xd4</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Jin-Cherng Lin</creator><creator>Han-Yuan Tzeng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201012</creationdate><title>Applying Particle Swarm Optimization to estimate software effort by multiple factors software project clustering</title><author>Jin-Cherng Lin ; Han-Yuan Tzeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c7bb954ad97a28a198202e1958406b75c81a269b294b7e0f8487e26af2c450a43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analysis of variance</topic><topic>Clustering algorithms</topic><topic>Correlation</topic><topic>correlation coefficient</topic><topic>Equations</topic><topic>Estimation</topic><topic>K-Means clustering algorithm</topic><topic>Mathematical model</topic><topic>Particle Swarm Optimization</topic><topic>project clustering</topic><topic>Software</topic><topic>software effort</topic><toplevel>online_resources</toplevel><creatorcontrib>Jin-Cherng Lin</creatorcontrib><creatorcontrib>Han-Yuan Tzeng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin-Cherng Lin</au><au>Han-Yuan Tzeng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Applying Particle Swarm Optimization to estimate software effort by multiple factors software project clustering</atitle><btitle>2010 International Computer Symposium (ICS2010)</btitle><stitle>COMPSYM</stitle><date>2010-12</date><risdate>2010</risdate><spage>1039</spage><epage>1044</epage><pages>1039-1044</pages><isbn>9781424476398</isbn><isbn>1424476399</isbn><eisbn>1424476402</eisbn><eisbn>9781424476404</eisbn><eisbn>1424476380</eisbn><eisbn>9781424476381</eisbn><abstract>In the IT industry, precisely evaluate the effort of each software development project to develop cost and development schedule management to the software company in the software are count for much. Since a project, majority of development teams will feel time isn't enough to use or the project valuation be false to make the software project failed. However the cost of the software project is almost a manpower cost, manpower cost and then become a direct proportion with development schedule, so precise effort the valuation more seem to be getting more important. Consequently, this research will use Pearson product-moment correlation coefficient and one-way analyze to select several factors then used K-Means clustering algorithm to software project clustering. After project clustering, we use Particle Swarm Optimization that take mean of MRE (MMRE) as a fitness value and N-1 test method to optimization of COCOMO parameters. Finally, take parameters that finsh the optimization to calculate the software project effort that is want to estimation. This research use 63 history software projects data of COCOMO to test. The experiment really expresses using base on project clustering with multiple factors can make more effective base on effort of the estimate software of COCOMO's three project mode.</abstract><pub>IEEE</pub><doi>10.1109/COMPSYM.2010.5685538</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424476398 |
ispartof | 2010 International Computer Symposium (ICS2010), 2010, p.1039-1044 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5685538 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Analysis of variance Clustering algorithms Correlation correlation coefficient Equations Estimation K-Means clustering algorithm Mathematical model Particle Swarm Optimization project clustering Software software effort |
title | Applying Particle Swarm Optimization to estimate software effort by multiple factors software project clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Applying%20Particle%20Swarm%20Optimization%20to%20estimate%20software%20effort%20by%20multiple%20factors%20software%20project%20clustering&rft.btitle=2010%20International%20Computer%20Symposium%20(ICS2010)&rft.au=Jin-Cherng%20Lin&rft.date=2010-12&rft.spage=1039&rft.epage=1044&rft.pages=1039-1044&rft.isbn=9781424476398&rft.isbn_list=1424476399&rft_id=info:doi/10.1109/COMPSYM.2010.5685538&rft_dat=%3Cieee_6IE%3E5685538%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424476402&rft.eisbn_list=9781424476404&rft.eisbn_list=1424476380&rft.eisbn_list=9781424476381&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5685538&rfr_iscdi=true |