Applying Particle Swarm Optimization to estimate software effort by multiple factors software project clustering

In the IT industry, precisely evaluate the effort of each software development project to develop cost and development schedule management to the software company in the software are count for much. Since a project, majority of development teams will feel time isn't enough to use or the project...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jin-Cherng Lin, Han-Yuan Tzeng
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1044
container_issue
container_start_page 1039
container_title
container_volume
creator Jin-Cherng Lin
Han-Yuan Tzeng
description In the IT industry, precisely evaluate the effort of each software development project to develop cost and development schedule management to the software company in the software are count for much. Since a project, majority of development teams will feel time isn't enough to use or the project valuation be false to make the software project failed. However the cost of the software project is almost a manpower cost, manpower cost and then become a direct proportion with development schedule, so precise effort the valuation more seem to be getting more important. Consequently, this research will use Pearson product-moment correlation coefficient and one-way analyze to select several factors then used K-Means clustering algorithm to software project clustering. After project clustering, we use Particle Swarm Optimization that take mean of MRE (MMRE) as a fitness value and N-1 test method to optimization of COCOMO parameters. Finally, take parameters that finsh the optimization to calculate the software project effort that is want to estimation. This research use 63 history software projects data of COCOMO to test. The experiment really expresses using base on project clustering with multiple factors can make more effective base on effort of the estimate software of COCOMO's three project mode.
doi_str_mv 10.1109/COMPSYM.2010.5685538
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5685538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5685538</ieee_id><sourcerecordid>5685538</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c7bb954ad97a28a198202e1958406b75c81a269b294b7e0f8487e26af2c450a43</originalsourceid><addsrcrecordid>eNpFUMFKAzEUjIig1n6BHvIDW5NsskmOpagVWlpoL55KNr5IyrYbkhRZv96AC77LY4aZ94ZB6ImSGaVEPy826-3uYz1jpDCiUULU6grdU844lw0n7BpNtVQjrrW6RdOUjqSMYLLW-g6FeQjd4M9feGti9rYDvPs28YQ3IfuT_zHZ92ecewypYJMBp97logAMzvUx43bAp0uXfShWZ2zuY_rXhNgfwWZsu0vKEMufB3TjTJdgOu4J2r--7BfLarV5e1_MV5XXJFdWtq0W3HxqaZgyVCtGGFAtFCdNK4VV1LBGt0zzVgJxiisJrDGOWS6I4fUEPf6d9QBwCLFkj8Nh7Kj-Bb-3Xd4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Applying Particle Swarm Optimization to estimate software effort by multiple factors software project clustering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jin-Cherng Lin ; Han-Yuan Tzeng</creator><creatorcontrib>Jin-Cherng Lin ; Han-Yuan Tzeng</creatorcontrib><description>In the IT industry, precisely evaluate the effort of each software development project to develop cost and development schedule management to the software company in the software are count for much. Since a project, majority of development teams will feel time isn't enough to use or the project valuation be false to make the software project failed. However the cost of the software project is almost a manpower cost, manpower cost and then become a direct proportion with development schedule, so precise effort the valuation more seem to be getting more important. Consequently, this research will use Pearson product-moment correlation coefficient and one-way analyze to select several factors then used K-Means clustering algorithm to software project clustering. After project clustering, we use Particle Swarm Optimization that take mean of MRE (MMRE) as a fitness value and N-1 test method to optimization of COCOMO parameters. Finally, take parameters that finsh the optimization to calculate the software project effort that is want to estimation. This research use 63 history software projects data of COCOMO to test. The experiment really expresses using base on project clustering with multiple factors can make more effective base on effort of the estimate software of COCOMO's three project mode.</description><identifier>ISBN: 9781424476398</identifier><identifier>ISBN: 1424476399</identifier><identifier>EISBN: 1424476402</identifier><identifier>EISBN: 9781424476404</identifier><identifier>EISBN: 1424476380</identifier><identifier>EISBN: 9781424476381</identifier><identifier>DOI: 10.1109/COMPSYM.2010.5685538</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analysis of variance ; Clustering algorithms ; Correlation ; correlation coefficient ; Equations ; Estimation ; K-Means clustering algorithm ; Mathematical model ; Particle Swarm Optimization ; project clustering ; Software ; software effort</subject><ispartof>2010 International Computer Symposium (ICS2010), 2010, p.1039-1044</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5685538$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5685538$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jin-Cherng Lin</creatorcontrib><creatorcontrib>Han-Yuan Tzeng</creatorcontrib><title>Applying Particle Swarm Optimization to estimate software effort by multiple factors software project clustering</title><title>2010 International Computer Symposium (ICS2010)</title><addtitle>COMPSYM</addtitle><description>In the IT industry, precisely evaluate the effort of each software development project to develop cost and development schedule management to the software company in the software are count for much. Since a project, majority of development teams will feel time isn't enough to use or the project valuation be false to make the software project failed. However the cost of the software project is almost a manpower cost, manpower cost and then become a direct proportion with development schedule, so precise effort the valuation more seem to be getting more important. Consequently, this research will use Pearson product-moment correlation coefficient and one-way analyze to select several factors then used K-Means clustering algorithm to software project clustering. After project clustering, we use Particle Swarm Optimization that take mean of MRE (MMRE) as a fitness value and N-1 test method to optimization of COCOMO parameters. Finally, take parameters that finsh the optimization to calculate the software project effort that is want to estimation. This research use 63 history software projects data of COCOMO to test. The experiment really expresses using base on project clustering with multiple factors can make more effective base on effort of the estimate software of COCOMO's three project mode.</description><subject>Analysis of variance</subject><subject>Clustering algorithms</subject><subject>Correlation</subject><subject>correlation coefficient</subject><subject>Equations</subject><subject>Estimation</subject><subject>K-Means clustering algorithm</subject><subject>Mathematical model</subject><subject>Particle Swarm Optimization</subject><subject>project clustering</subject><subject>Software</subject><subject>software effort</subject><isbn>9781424476398</isbn><isbn>1424476399</isbn><isbn>1424476402</isbn><isbn>9781424476404</isbn><isbn>1424476380</isbn><isbn>9781424476381</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUMFKAzEUjIig1n6BHvIDW5NsskmOpagVWlpoL55KNr5IyrYbkhRZv96AC77LY4aZ94ZB6ImSGaVEPy826-3uYz1jpDCiUULU6grdU844lw0n7BpNtVQjrrW6RdOUjqSMYLLW-g6FeQjd4M9feGti9rYDvPs28YQ3IfuT_zHZ92ecewypYJMBp97logAMzvUx43bAp0uXfShWZ2zuY_rXhNgfwWZsu0vKEMufB3TjTJdgOu4J2r--7BfLarV5e1_MV5XXJFdWtq0W3HxqaZgyVCtGGFAtFCdNK4VV1LBGt0zzVgJxiisJrDGOWS6I4fUEPf6d9QBwCLFkj8Nh7Kj-Bb-3Xd4</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Jin-Cherng Lin</creator><creator>Han-Yuan Tzeng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201012</creationdate><title>Applying Particle Swarm Optimization to estimate software effort by multiple factors software project clustering</title><author>Jin-Cherng Lin ; Han-Yuan Tzeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c7bb954ad97a28a198202e1958406b75c81a269b294b7e0f8487e26af2c450a43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analysis of variance</topic><topic>Clustering algorithms</topic><topic>Correlation</topic><topic>correlation coefficient</topic><topic>Equations</topic><topic>Estimation</topic><topic>K-Means clustering algorithm</topic><topic>Mathematical model</topic><topic>Particle Swarm Optimization</topic><topic>project clustering</topic><topic>Software</topic><topic>software effort</topic><toplevel>online_resources</toplevel><creatorcontrib>Jin-Cherng Lin</creatorcontrib><creatorcontrib>Han-Yuan Tzeng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin-Cherng Lin</au><au>Han-Yuan Tzeng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Applying Particle Swarm Optimization to estimate software effort by multiple factors software project clustering</atitle><btitle>2010 International Computer Symposium (ICS2010)</btitle><stitle>COMPSYM</stitle><date>2010-12</date><risdate>2010</risdate><spage>1039</spage><epage>1044</epage><pages>1039-1044</pages><isbn>9781424476398</isbn><isbn>1424476399</isbn><eisbn>1424476402</eisbn><eisbn>9781424476404</eisbn><eisbn>1424476380</eisbn><eisbn>9781424476381</eisbn><abstract>In the IT industry, precisely evaluate the effort of each software development project to develop cost and development schedule management to the software company in the software are count for much. Since a project, majority of development teams will feel time isn't enough to use or the project valuation be false to make the software project failed. However the cost of the software project is almost a manpower cost, manpower cost and then become a direct proportion with development schedule, so precise effort the valuation more seem to be getting more important. Consequently, this research will use Pearson product-moment correlation coefficient and one-way analyze to select several factors then used K-Means clustering algorithm to software project clustering. After project clustering, we use Particle Swarm Optimization that take mean of MRE (MMRE) as a fitness value and N-1 test method to optimization of COCOMO parameters. Finally, take parameters that finsh the optimization to calculate the software project effort that is want to estimation. This research use 63 history software projects data of COCOMO to test. The experiment really expresses using base on project clustering with multiple factors can make more effective base on effort of the estimate software of COCOMO's three project mode.</abstract><pub>IEEE</pub><doi>10.1109/COMPSYM.2010.5685538</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424476398
ispartof 2010 International Computer Symposium (ICS2010), 2010, p.1039-1044
issn
language eng
recordid cdi_ieee_primary_5685538
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Analysis of variance
Clustering algorithms
Correlation
correlation coefficient
Equations
Estimation
K-Means clustering algorithm
Mathematical model
Particle Swarm Optimization
project clustering
Software
software effort
title Applying Particle Swarm Optimization to estimate software effort by multiple factors software project clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Applying%20Particle%20Swarm%20Optimization%20to%20estimate%20software%20effort%20by%20multiple%20factors%20software%20project%20clustering&rft.btitle=2010%20International%20Computer%20Symposium%20(ICS2010)&rft.au=Jin-Cherng%20Lin&rft.date=2010-12&rft.spage=1039&rft.epage=1044&rft.pages=1039-1044&rft.isbn=9781424476398&rft.isbn_list=1424476399&rft_id=info:doi/10.1109/COMPSYM.2010.5685538&rft_dat=%3Cieee_6IE%3E5685538%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424476402&rft.eisbn_list=9781424476404&rft.eisbn_list=1424476380&rft.eisbn_list=9781424476381&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5685538&rfr_iscdi=true