Frame selection of interview channel for NIST speaker recognition evaluation
In this paper, we study a front-end frame selection approach for the interview channel speaker recognition system. This new approach keeps the high quality speech frames and removes noisy and irrelevant speech frames for speaker modeling. For robust voice activity detection (VAD) under the different...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 308 |
---|---|
container_issue | |
container_start_page | 305 |
container_title | |
container_volume | |
creator | Hanwu Sun Bin Ma Haizhou Li |
description | In this paper, we study a front-end frame selection approach for the interview channel speaker recognition system. This new approach keeps the high quality speech frames and removes noisy and irrelevant speech frames for speaker modeling. For robust voice activity detection (VAD) under the different types of microphones located in the interview room, we adopt the spectral subtraction algorithm for noise reduction. An energy based frame selection algorithm is first applied to indicate the speech activity at the frame level. To overcome the summed channel effects in the interview condition, a study is conducted to effectively extract the relevant speaker's speech frames based on VAD Tags and ASR transcript Tags provided by NIST. The eigenchannel based GMM-SVM speaker recognition system is used to evaluate the proposed method. The experiments are conducted on the NIST 2008 and NIST 2010 Speaker Recognition Evaluation interview-interview conditions. It demonstrates that the approach provides an efficient way to select high quality speech frames and the relevant speaker's voice in the interview environment for speaker recognition. |
doi_str_mv | 10.1109/ISCSLP.2010.5684886 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5684886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5684886</ieee_id><sourcerecordid>5684886</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-370d513d17f00662403834bee3999b07043258f42c63f0ff2b1fd3dc9c6d57a23</originalsourceid><addsrcrecordid>eNo1T8tOwzAQNEJIQMkX9OIfSFk_4thHVFGIFAFScq8cZw2GNKmcUMTfk0KZyzykXc0QsmSwYgzMbVGtq_JlxWEOMqWl1uqMJCbXTHIpFZfKnJPrfyPlJUnG8R1mZEoak12RchPtDumIHbopDD0dPA39hPEQ8Iu6N9v32FE_RPpUVDUd92g_MNKIbnjtw-8FHmz3aY_yhlx4242YnHhB6s19vX5My-eHYn1XpsHAlIoc2oyJluUeQM29QGghG0RhjGkgByl4pr3kTgkP3vOG-Va0zjjVZrnlYkGWf28DIm73Mexs_N6e9osfPxdOxg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Frame selection of interview channel for NIST speaker recognition evaluation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hanwu Sun ; Bin Ma ; Haizhou Li</creator><creatorcontrib>Hanwu Sun ; Bin Ma ; Haizhou Li</creatorcontrib><description>In this paper, we study a front-end frame selection approach for the interview channel speaker recognition system. This new approach keeps the high quality speech frames and removes noisy and irrelevant speech frames for speaker modeling. For robust voice activity detection (VAD) under the different types of microphones located in the interview room, we adopt the spectral subtraction algorithm for noise reduction. An energy based frame selection algorithm is first applied to indicate the speech activity at the frame level. To overcome the summed channel effects in the interview condition, a study is conducted to effectively extract the relevant speaker's speech frames based on VAD Tags and ASR transcript Tags provided by NIST. The eigenchannel based GMM-SVM speaker recognition system is used to evaluate the proposed method. The experiments are conducted on the NIST 2008 and NIST 2010 Speaker Recognition Evaluation interview-interview conditions. It demonstrates that the approach provides an efficient way to select high quality speech frames and the relevant speaker's voice in the interview environment for speaker recognition.</description><identifier>ISBN: 1424462444</identifier><identifier>ISBN: 9781424462445</identifier><identifier>EISBN: 9781424462469</identifier><identifier>EISBN: 1424462460</identifier><identifier>EISBN: 1424462452</identifier><identifier>EISBN: 9781424462452</identifier><identifier>DOI: 10.1109/ISCSLP.2010.5684886</identifier><language>eng</language><publisher>IEEE</publisher><subject>distant microphone ; GMM-SVM ; interview channel ; Interviews ; Microphones ; NIST ; Speaker recognition ; Speech ; Speech processing ; Speech recognition</subject><ispartof>2010 7th International Symposium on Chinese Spoken Language Processing, 2010, p.305-308</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5684886$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5684886$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hanwu Sun</creatorcontrib><creatorcontrib>Bin Ma</creatorcontrib><creatorcontrib>Haizhou Li</creatorcontrib><title>Frame selection of interview channel for NIST speaker recognition evaluation</title><title>2010 7th International Symposium on Chinese Spoken Language Processing</title><addtitle>ISCSLP</addtitle><description>In this paper, we study a front-end frame selection approach for the interview channel speaker recognition system. This new approach keeps the high quality speech frames and removes noisy and irrelevant speech frames for speaker modeling. For robust voice activity detection (VAD) under the different types of microphones located in the interview room, we adopt the spectral subtraction algorithm for noise reduction. An energy based frame selection algorithm is first applied to indicate the speech activity at the frame level. To overcome the summed channel effects in the interview condition, a study is conducted to effectively extract the relevant speaker's speech frames based on VAD Tags and ASR transcript Tags provided by NIST. The eigenchannel based GMM-SVM speaker recognition system is used to evaluate the proposed method. The experiments are conducted on the NIST 2008 and NIST 2010 Speaker Recognition Evaluation interview-interview conditions. It demonstrates that the approach provides an efficient way to select high quality speech frames and the relevant speaker's voice in the interview environment for speaker recognition.</description><subject>distant microphone</subject><subject>GMM-SVM</subject><subject>interview channel</subject><subject>Interviews</subject><subject>Microphones</subject><subject>NIST</subject><subject>Speaker recognition</subject><subject>Speech</subject><subject>Speech processing</subject><subject>Speech recognition</subject><isbn>1424462444</isbn><isbn>9781424462445</isbn><isbn>9781424462469</isbn><isbn>1424462460</isbn><isbn>1424462452</isbn><isbn>9781424462452</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1T8tOwzAQNEJIQMkX9OIfSFk_4thHVFGIFAFScq8cZw2GNKmcUMTfk0KZyzykXc0QsmSwYgzMbVGtq_JlxWEOMqWl1uqMJCbXTHIpFZfKnJPrfyPlJUnG8R1mZEoak12RchPtDumIHbopDD0dPA39hPEQ8Iu6N9v32FE_RPpUVDUd92g_MNKIbnjtw-8FHmz3aY_yhlx4242YnHhB6s19vX5My-eHYn1XpsHAlIoc2oyJluUeQM29QGghG0RhjGkgByl4pr3kTgkP3vOG-Va0zjjVZrnlYkGWf28DIm73Mexs_N6e9osfPxdOxg</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Hanwu Sun</creator><creator>Bin Ma</creator><creator>Haizhou Li</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201011</creationdate><title>Frame selection of interview channel for NIST speaker recognition evaluation</title><author>Hanwu Sun ; Bin Ma ; Haizhou Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-370d513d17f00662403834bee3999b07043258f42c63f0ff2b1fd3dc9c6d57a23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>distant microphone</topic><topic>GMM-SVM</topic><topic>interview channel</topic><topic>Interviews</topic><topic>Microphones</topic><topic>NIST</topic><topic>Speaker recognition</topic><topic>Speech</topic><topic>Speech processing</topic><topic>Speech recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Hanwu Sun</creatorcontrib><creatorcontrib>Bin Ma</creatorcontrib><creatorcontrib>Haizhou Li</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hanwu Sun</au><au>Bin Ma</au><au>Haizhou Li</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Frame selection of interview channel for NIST speaker recognition evaluation</atitle><btitle>2010 7th International Symposium on Chinese Spoken Language Processing</btitle><stitle>ISCSLP</stitle><date>2010-11</date><risdate>2010</risdate><spage>305</spage><epage>308</epage><pages>305-308</pages><isbn>1424462444</isbn><isbn>9781424462445</isbn><eisbn>9781424462469</eisbn><eisbn>1424462460</eisbn><eisbn>1424462452</eisbn><eisbn>9781424462452</eisbn><abstract>In this paper, we study a front-end frame selection approach for the interview channel speaker recognition system. This new approach keeps the high quality speech frames and removes noisy and irrelevant speech frames for speaker modeling. For robust voice activity detection (VAD) under the different types of microphones located in the interview room, we adopt the spectral subtraction algorithm for noise reduction. An energy based frame selection algorithm is first applied to indicate the speech activity at the frame level. To overcome the summed channel effects in the interview condition, a study is conducted to effectively extract the relevant speaker's speech frames based on VAD Tags and ASR transcript Tags provided by NIST. The eigenchannel based GMM-SVM speaker recognition system is used to evaluate the proposed method. The experiments are conducted on the NIST 2008 and NIST 2010 Speaker Recognition Evaluation interview-interview conditions. It demonstrates that the approach provides an efficient way to select high quality speech frames and the relevant speaker's voice in the interview environment for speaker recognition.</abstract><pub>IEEE</pub><doi>10.1109/ISCSLP.2010.5684886</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424462444 |
ispartof | 2010 7th International Symposium on Chinese Spoken Language Processing, 2010, p.305-308 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5684886 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | distant microphone GMM-SVM interview channel Interviews Microphones NIST Speaker recognition Speech Speech processing Speech recognition |
title | Frame selection of interview channel for NIST speaker recognition evaluation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A44%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Frame%20selection%20of%20interview%20channel%20for%20NIST%20speaker%20recognition%20evaluation&rft.btitle=2010%207th%20International%20Symposium%20on%20Chinese%20Spoken%20Language%20Processing&rft.au=Hanwu%20Sun&rft.date=2010-11&rft.spage=305&rft.epage=308&rft.pages=305-308&rft.isbn=1424462444&rft.isbn_list=9781424462445&rft_id=info:doi/10.1109/ISCSLP.2010.5684886&rft_dat=%3Cieee_6IE%3E5684886%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424462469&rft.eisbn_list=1424462460&rft.eisbn_list=1424462452&rft.eisbn_list=9781424462452&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5684886&rfr_iscdi=true |