Improving the informativeness of verbose queries using summarization techniques for spoken document retrieval

Query-by-example information retrieval aims at helping users to find relevant documents accurately when users provide specific query exemplars describing what they are interested in. The query exemplars are usually long and in the form of either a partial or even a full document. However, they may c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shih-Hsiang Lin, Chen, Berlin, Ea-Ee Jan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 79
container_issue
container_start_page 75
container_title
container_volume
creator Shih-Hsiang Lin
Chen, Berlin
Ea-Ee Jan
description Query-by-example information retrieval aims at helping users to find relevant documents accurately when users provide specific query exemplars describing what they are interested in. The query exemplars are usually long and in the form of either a partial or even a full document. However, they may contain extraneous terms (or off-topic information) that would have a negative impact on the retrieval performance. In this paper, we propose to integrate extractive summarization techniques into the retrieval process so as to improve the informativeness of a verbose query exemplar. The original query exemplar is first divided into several sub-queries or sentences. To construct a new concise query exemplar, summarization techniques are then employed to select a salient subset of sub-queries. Experiments on the TDT Chinese collection show that the proposed approach is indeed effective and promising.
doi_str_mv 10.1109/ISCSLP.2010.5684847
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5684847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5684847</ieee_id><sourcerecordid>5684847</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-3b33413d089ca5bf899dd8e3d5d400312134811bad4bb412c878794dbe9272cc3</originalsourceid><addsrcrecordid>eNo1kN1KAzEQhSMiqLVP0Ju8QGt-ZneTSyn-FAoK7X3ZbGZttJvUZHdBn94U67kZ5vCdYTiEzDhbcM70_Wqz3KzfFoJloygVKKguyFRXioMAKAWU-pLc_i8A12Sa0gfLKkrQurgh3ao7xjA6_077PVLn2xC7uncjekyJhpaOGE1ISL8GjA4THdIJTkPX1dH9ZDR42mOz9y4TieY8TcfwiZ7a0Awd-p5G7HN0rA935KqtDwmn5zkh26fH7fJlvn59Xi0f1nOnWT-XRkrg0jKlm7owrdLaWoXSFhYYk1xwCYpzU1swBrhoVKUqDdagFpVoGjkhs7-zDhF3x-jyq9-7c0HyF4vuXTM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improving the informativeness of verbose queries using summarization techniques for spoken document retrieval</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shih-Hsiang Lin ; Chen, Berlin ; Ea-Ee Jan</creator><creatorcontrib>Shih-Hsiang Lin ; Chen, Berlin ; Ea-Ee Jan</creatorcontrib><description>Query-by-example information retrieval aims at helping users to find relevant documents accurately when users provide specific query exemplars describing what they are interested in. The query exemplars are usually long and in the form of either a partial or even a full document. However, they may contain extraneous terms (or off-topic information) that would have a negative impact on the retrieval performance. In this paper, we propose to integrate extractive summarization techniques into the retrieval process so as to improve the informativeness of a verbose query exemplar. The original query exemplar is first divided into several sub-queries or sentences. To construct a new concise query exemplar, summarization techniques are then employed to select a salient subset of sub-queries. Experiments on the TDT Chinese collection show that the proposed approach is indeed effective and promising.</description><identifier>ISBN: 1424462444</identifier><identifier>ISBN: 9781424462445</identifier><identifier>EISBN: 9781424462469</identifier><identifier>EISBN: 1424462460</identifier><identifier>EISBN: 1424462452</identifier><identifier>EISBN: 9781424462452</identifier><identifier>DOI: 10.1109/ISCSLP.2010.5684847</identifier><language>eng</language><publisher>IEEE</publisher><subject>Estimation ; Hidden Markov models ; Information retrieval ; Machine learning ; query exemplar ; query-by-example ; Speech ; Speech recognition ; summarization technique ; Training ; verbose queries</subject><ispartof>2010 7th International Symposium on Chinese Spoken Language Processing, 2010, p.75-79</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5684847$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5684847$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shih-Hsiang Lin</creatorcontrib><creatorcontrib>Chen, Berlin</creatorcontrib><creatorcontrib>Ea-Ee Jan</creatorcontrib><title>Improving the informativeness of verbose queries using summarization techniques for spoken document retrieval</title><title>2010 7th International Symposium on Chinese Spoken Language Processing</title><addtitle>ISCSLP</addtitle><description>Query-by-example information retrieval aims at helping users to find relevant documents accurately when users provide specific query exemplars describing what they are interested in. The query exemplars are usually long and in the form of either a partial or even a full document. However, they may contain extraneous terms (or off-topic information) that would have a negative impact on the retrieval performance. In this paper, we propose to integrate extractive summarization techniques into the retrieval process so as to improve the informativeness of a verbose query exemplar. The original query exemplar is first divided into several sub-queries or sentences. To construct a new concise query exemplar, summarization techniques are then employed to select a salient subset of sub-queries. Experiments on the TDT Chinese collection show that the proposed approach is indeed effective and promising.</description><subject>Estimation</subject><subject>Hidden Markov models</subject><subject>Information retrieval</subject><subject>Machine learning</subject><subject>query exemplar</subject><subject>query-by-example</subject><subject>Speech</subject><subject>Speech recognition</subject><subject>summarization technique</subject><subject>Training</subject><subject>verbose queries</subject><isbn>1424462444</isbn><isbn>9781424462445</isbn><isbn>9781424462469</isbn><isbn>1424462460</isbn><isbn>1424462452</isbn><isbn>9781424462452</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kN1KAzEQhSMiqLVP0Ju8QGt-ZneTSyn-FAoK7X3ZbGZttJvUZHdBn94U67kZ5vCdYTiEzDhbcM70_Wqz3KzfFoJloygVKKguyFRXioMAKAWU-pLc_i8A12Sa0gfLKkrQurgh3ao7xjA6_077PVLn2xC7uncjekyJhpaOGE1ISL8GjA4THdIJTkPX1dH9ZDR42mOz9y4TieY8TcfwiZ7a0Awd-p5G7HN0rA935KqtDwmn5zkh26fH7fJlvn59Xi0f1nOnWT-XRkrg0jKlm7owrdLaWoXSFhYYk1xwCYpzU1swBrhoVKUqDdagFpVoGjkhs7-zDhF3x-jyq9-7c0HyF4vuXTM</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Shih-Hsiang Lin</creator><creator>Chen, Berlin</creator><creator>Ea-Ee Jan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201011</creationdate><title>Improving the informativeness of verbose queries using summarization techniques for spoken document retrieval</title><author>Shih-Hsiang Lin ; Chen, Berlin ; Ea-Ee Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-3b33413d089ca5bf899dd8e3d5d400312134811bad4bb412c878794dbe9272cc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Estimation</topic><topic>Hidden Markov models</topic><topic>Information retrieval</topic><topic>Machine learning</topic><topic>query exemplar</topic><topic>query-by-example</topic><topic>Speech</topic><topic>Speech recognition</topic><topic>summarization technique</topic><topic>Training</topic><topic>verbose queries</topic><toplevel>online_resources</toplevel><creatorcontrib>Shih-Hsiang Lin</creatorcontrib><creatorcontrib>Chen, Berlin</creatorcontrib><creatorcontrib>Ea-Ee Jan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shih-Hsiang Lin</au><au>Chen, Berlin</au><au>Ea-Ee Jan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improving the informativeness of verbose queries using summarization techniques for spoken document retrieval</atitle><btitle>2010 7th International Symposium on Chinese Spoken Language Processing</btitle><stitle>ISCSLP</stitle><date>2010-11</date><risdate>2010</risdate><spage>75</spage><epage>79</epage><pages>75-79</pages><isbn>1424462444</isbn><isbn>9781424462445</isbn><eisbn>9781424462469</eisbn><eisbn>1424462460</eisbn><eisbn>1424462452</eisbn><eisbn>9781424462452</eisbn><abstract>Query-by-example information retrieval aims at helping users to find relevant documents accurately when users provide specific query exemplars describing what they are interested in. The query exemplars are usually long and in the form of either a partial or even a full document. However, they may contain extraneous terms (or off-topic information) that would have a negative impact on the retrieval performance. In this paper, we propose to integrate extractive summarization techniques into the retrieval process so as to improve the informativeness of a verbose query exemplar. The original query exemplar is first divided into several sub-queries or sentences. To construct a new concise query exemplar, summarization techniques are then employed to select a salient subset of sub-queries. Experiments on the TDT Chinese collection show that the proposed approach is indeed effective and promising.</abstract><pub>IEEE</pub><doi>10.1109/ISCSLP.2010.5684847</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424462444
ispartof 2010 7th International Symposium on Chinese Spoken Language Processing, 2010, p.75-79
issn
language eng
recordid cdi_ieee_primary_5684847
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Estimation
Hidden Markov models
Information retrieval
Machine learning
query exemplar
query-by-example
Speech
Speech recognition
summarization technique
Training
verbose queries
title Improving the informativeness of verbose queries using summarization techniques for spoken document retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A52%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improving%20the%20informativeness%20of%20verbose%20queries%20using%20summarization%20techniques%20for%20spoken%20document%20retrieval&rft.btitle=2010%207th%20International%20Symposium%20on%20Chinese%20Spoken%20Language%20Processing&rft.au=Shih-Hsiang%20Lin&rft.date=2010-11&rft.spage=75&rft.epage=79&rft.pages=75-79&rft.isbn=1424462444&rft.isbn_list=9781424462445&rft_id=info:doi/10.1109/ISCSLP.2010.5684847&rft_dat=%3Cieee_6IE%3E5684847%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424462469&rft.eisbn_list=1424462460&rft.eisbn_list=1424462452&rft.eisbn_list=9781424462452&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5684847&rfr_iscdi=true