A Three-State Node Reliability Model for Sensor Networks
In this paper we formulate and analyze a model for assessing the reliability of a wireless sensor network (WSN) based on classifying the operating states of each node at any instant into one of three possible states: a state where both the sensing and wireless modules are operating, a state where on...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Shazly, M H Elmallah, E S AboElFotoh, H M F |
description | In this paper we formulate and analyze a model for assessing the reliability of a wireless sensor network (WSN) based on classifying the operating states of each node at any instant into one of three possible states: a state where both the sensing and wireless modules are operating, a state where only the wireless module is operating, and a state where the wireless module is failed. Thus, in the second state a node can only relay traffic among its neighbours without generating its own data. We define the reliability of a WSN as the probability that the sink node can collect data from a number of nodes whose total weight exceeds a specified threshold limit, given that each node can be in any one of the three possible states with a given probability. Existing results in the literature show that a restricted 2-state version of the problem is #P-hard even when the network is a rectangular grid. Nevertheless, for a rectangular W × L grid on n nodes where the sink node lies in one of the corners, the restricted 2-state reliability problem can be solved in O(nL2 w ) time. Thus, the algorithm runs in polynomial time for any fixed W. Our work here derives an exact algorithm for the generalized 3-state reliability model on a generalized class of grids, called diagonalized grids, while maintaining the same O(nL2 w ) running time. We obtain numerical results that illustrate the use of the devised algorithm as a WSN topological design tool. |
doi_str_mv | 10.1109/GLOCOM.2010.5683750 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5683750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5683750</ieee_id><sourcerecordid>5683750</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-df39f60c7c68d9269de1d681052a6108ff09187a7ffdbf338a226befa2450f893</originalsourceid><addsrcrecordid>eNpFj9tKw0AURccbmFa_oC_zA6lz5j6PJWgV0gZshb6VSecMjkYjSUD69w1Y8GnB2rBgEzIDNgdg7mFZVkW1mnM2CqWtMIpdkAlILqXSwsAlybgyOjda7q7-By2uSQZOsFxxt7slk77_YExJqyAjdkG37x1ivhn8gHTdBqSv2CRfpyYNR7oaRUNj29ENfvcj1jj8tt1nf0duom96vD9zSt6eHrfFc15Wy5diUeYJjBryEIWLmh3MQdvguHYBIWgLTHGvgdkYmQNrvIkx1FEI6znXNUbPpWLROjEls79uQsT9T5e-fHfcn--LEy58Sgk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Three-State Node Reliability Model for Sensor Networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shazly, M H ; Elmallah, E S ; AboElFotoh, H M F</creator><creatorcontrib>Shazly, M H ; Elmallah, E S ; AboElFotoh, H M F</creatorcontrib><description>In this paper we formulate and analyze a model for assessing the reliability of a wireless sensor network (WSN) based on classifying the operating states of each node at any instant into one of three possible states: a state where both the sensing and wireless modules are operating, a state where only the wireless module is operating, and a state where the wireless module is failed. Thus, in the second state a node can only relay traffic among its neighbours without generating its own data. We define the reliability of a WSN as the probability that the sink node can collect data from a number of nodes whose total weight exceeds a specified threshold limit, given that each node can be in any one of the three possible states with a given probability. Existing results in the literature show that a restricted 2-state version of the problem is #P-hard even when the network is a rectangular grid. Nevertheless, for a rectangular W × L grid on n nodes where the sink node lies in one of the corners, the restricted 2-state reliability problem can be solved in O(nL2 w ) time. Thus, the algorithm runs in polynomial time for any fixed W. Our work here derives an exact algorithm for the generalized 3-state reliability model on a generalized class of grids, called diagonalized grids, while maintaining the same O(nL2 w ) running time. We obtain numerical results that illustrate the use of the devised algorithm as a WSN topological design tool.</description><identifier>ISSN: 1930-529X</identifier><identifier>ISBN: 1424456363</identifier><identifier>ISBN: 9781424456369</identifier><identifier>EISSN: 2576-764X</identifier><identifier>EISBN: 1424456371</identifier><identifier>EISBN: 9781424456383</identifier><identifier>EISBN: 9781424456376</identifier><identifier>EISBN: 142445638X</identifier><identifier>DOI: 10.1109/GLOCOM.2010.5683750</identifier><language>eng</language><publisher>IEEE</publisher><subject>Ad hoc networks ; Computer network reliability ; Peer to peer computing ; Reliability ; Sensors ; Wireless communication ; Wireless sensor networks</subject><ispartof>2010 IEEE Global Telecommunications Conference GLOBECOM 2010, 2010, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5683750$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5683750$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shazly, M H</creatorcontrib><creatorcontrib>Elmallah, E S</creatorcontrib><creatorcontrib>AboElFotoh, H M F</creatorcontrib><title>A Three-State Node Reliability Model for Sensor Networks</title><title>2010 IEEE Global Telecommunications Conference GLOBECOM 2010</title><addtitle>GLOCOM</addtitle><description>In this paper we formulate and analyze a model for assessing the reliability of a wireless sensor network (WSN) based on classifying the operating states of each node at any instant into one of three possible states: a state where both the sensing and wireless modules are operating, a state where only the wireless module is operating, and a state where the wireless module is failed. Thus, in the second state a node can only relay traffic among its neighbours without generating its own data. We define the reliability of a WSN as the probability that the sink node can collect data from a number of nodes whose total weight exceeds a specified threshold limit, given that each node can be in any one of the three possible states with a given probability. Existing results in the literature show that a restricted 2-state version of the problem is #P-hard even when the network is a rectangular grid. Nevertheless, for a rectangular W × L grid on n nodes where the sink node lies in one of the corners, the restricted 2-state reliability problem can be solved in O(nL2 w ) time. Thus, the algorithm runs in polynomial time for any fixed W. Our work here derives an exact algorithm for the generalized 3-state reliability model on a generalized class of grids, called diagonalized grids, while maintaining the same O(nL2 w ) running time. We obtain numerical results that illustrate the use of the devised algorithm as a WSN topological design tool.</description><subject>Ad hoc networks</subject><subject>Computer network reliability</subject><subject>Peer to peer computing</subject><subject>Reliability</subject><subject>Sensors</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><issn>1930-529X</issn><issn>2576-764X</issn><isbn>1424456363</isbn><isbn>9781424456369</isbn><isbn>1424456371</isbn><isbn>9781424456383</isbn><isbn>9781424456376</isbn><isbn>142445638X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj9tKw0AURccbmFa_oC_zA6lz5j6PJWgV0gZshb6VSecMjkYjSUD69w1Y8GnB2rBgEzIDNgdg7mFZVkW1mnM2CqWtMIpdkAlILqXSwsAlybgyOjda7q7-By2uSQZOsFxxt7slk77_YExJqyAjdkG37x1ivhn8gHTdBqSv2CRfpyYNR7oaRUNj29ENfvcj1jj8tt1nf0duom96vD9zSt6eHrfFc15Wy5diUeYJjBryEIWLmh3MQdvguHYBIWgLTHGvgdkYmQNrvIkx1FEI6znXNUbPpWLROjEls79uQsT9T5e-fHfcn--LEy58Sgk</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Shazly, M H</creator><creator>Elmallah, E S</creator><creator>AboElFotoh, H M F</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201012</creationdate><title>A Three-State Node Reliability Model for Sensor Networks</title><author>Shazly, M H ; Elmallah, E S ; AboElFotoh, H M F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-df39f60c7c68d9269de1d681052a6108ff09187a7ffdbf338a226befa2450f893</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Ad hoc networks</topic><topic>Computer network reliability</topic><topic>Peer to peer computing</topic><topic>Reliability</topic><topic>Sensors</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Shazly, M H</creatorcontrib><creatorcontrib>Elmallah, E S</creatorcontrib><creatorcontrib>AboElFotoh, H M F</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shazly, M H</au><au>Elmallah, E S</au><au>AboElFotoh, H M F</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Three-State Node Reliability Model for Sensor Networks</atitle><btitle>2010 IEEE Global Telecommunications Conference GLOBECOM 2010</btitle><stitle>GLOCOM</stitle><date>2010-12</date><risdate>2010</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1930-529X</issn><eissn>2576-764X</eissn><isbn>1424456363</isbn><isbn>9781424456369</isbn><eisbn>1424456371</eisbn><eisbn>9781424456383</eisbn><eisbn>9781424456376</eisbn><eisbn>142445638X</eisbn><abstract>In this paper we formulate and analyze a model for assessing the reliability of a wireless sensor network (WSN) based on classifying the operating states of each node at any instant into one of three possible states: a state where both the sensing and wireless modules are operating, a state where only the wireless module is operating, and a state where the wireless module is failed. Thus, in the second state a node can only relay traffic among its neighbours without generating its own data. We define the reliability of a WSN as the probability that the sink node can collect data from a number of nodes whose total weight exceeds a specified threshold limit, given that each node can be in any one of the three possible states with a given probability. Existing results in the literature show that a restricted 2-state version of the problem is #P-hard even when the network is a rectangular grid. Nevertheless, for a rectangular W × L grid on n nodes where the sink node lies in one of the corners, the restricted 2-state reliability problem can be solved in O(nL2 w ) time. Thus, the algorithm runs in polynomial time for any fixed W. Our work here derives an exact algorithm for the generalized 3-state reliability model on a generalized class of grids, called diagonalized grids, while maintaining the same O(nL2 w ) running time. We obtain numerical results that illustrate the use of the devised algorithm as a WSN topological design tool.</abstract><pub>IEEE</pub><doi>10.1109/GLOCOM.2010.5683750</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1930-529X |
ispartof | 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, 2010, p.1-5 |
issn | 1930-529X 2576-764X |
language | eng |
recordid | cdi_ieee_primary_5683750 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Ad hoc networks Computer network reliability Peer to peer computing Reliability Sensors Wireless communication Wireless sensor networks |
title | A Three-State Node Reliability Model for Sensor Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A02%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Three-State%20Node%20Reliability%20Model%20for%20Sensor%20Networks&rft.btitle=2010%20IEEE%20Global%20Telecommunications%20Conference%20GLOBECOM%202010&rft.au=Shazly,%20M%20H&rft.date=2010-12&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1930-529X&rft.eissn=2576-764X&rft.isbn=1424456363&rft.isbn_list=9781424456369&rft_id=info:doi/10.1109/GLOCOM.2010.5683750&rft_dat=%3Cieee_6IE%3E5683750%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424456371&rft.eisbn_list=9781424456383&rft.eisbn_list=9781424456376&rft.eisbn_list=142445638X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5683750&rfr_iscdi=true |