Fuzzy rule representation and knowledge base construction in expert system

Fuzzy rule is the core of fuzzy expert system, which use relational database methods knowledge to build knowledge base, the combination of database and knowledge base is the development trend of the knowledge base. This paper describes the fuzzy rules first, including fuzzy logic, fuzzy production r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yongchang Ren, Xuguang Chai, Tao Xing, Xiaoji Chen
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue
container_start_page 106
container_title
container_volume
creator Yongchang Ren
Xuguang Chai
Tao Xing
Xiaoji Chen
description Fuzzy rule is the core of fuzzy expert system, which use relational database methods knowledge to build knowledge base, the combination of database and knowledge base is the development trend of the knowledge base. This paper describes the fuzzy rules first, including fuzzy logic, fuzzy production rules, multi-dimensional fuzzy rules; and studies the fuzzy rule representation, including the general rule representation and fuzzy rule representation; finally researches the construction of knowledge base, including the Knowledge Base System Structure and knowledge base table structure. The results show that the type knowledge of fuzzy rule reflects the relationship between the rules of deductive reasoning logical implication of the way to the database is a natural extension from the database to the knowledge base, which has some theoretical and practical value.
doi_str_mv 10.1109/ISKE.2010.5680805
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5680805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5680805</ieee_id><sourcerecordid>5680805</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a1ad5734f155941cdcc9abcdd30e093c00f07f0ff01eb69fb549b92f539746983</originalsourceid><addsrcrecordid>eNo1j9FKwzAYhSMiqLMPIN7kBTr_NEmbXMrYdDrwwt2PNP0j1S4tSYp2T-_QeW4OHx8cOITcMpgzBvp-_faynBdwRFkqUCDPSKYrxUQhRFlprs7J9T8wdUmyGD_gGFlUvCivyPNqPBwmGsYOacAhYESfTGp7T41v6Kfvvzps3pHWJiK1vY8pjPbXt57i94Ah0TjFhPsbcuFMFzE79YxsV8vt4infvD6uFw-bvNWQcsNMIysuHJNSC2Yba7WpbdNwQNDcAjioHDgHDOtSu1oKXevCSa4rUWrFZ-Tub7ZFxN0Q2r0J0-70nv8A0UNPIQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fuzzy rule representation and knowledge base construction in expert system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yongchang Ren ; Xuguang Chai ; Tao Xing ; Xiaoji Chen</creator><creatorcontrib>Yongchang Ren ; Xuguang Chai ; Tao Xing ; Xiaoji Chen</creatorcontrib><description>Fuzzy rule is the core of fuzzy expert system, which use relational database methods knowledge to build knowledge base, the combination of database and knowledge base is the development trend of the knowledge base. This paper describes the fuzzy rules first, including fuzzy logic, fuzzy production rules, multi-dimensional fuzzy rules; and studies the fuzzy rule representation, including the general rule representation and fuzzy rule representation; finally researches the construction of knowledge base, including the Knowledge Base System Structure and knowledge base table structure. The results show that the type knowledge of fuzzy rule reflects the relationship between the rules of deductive reasoning logical implication of the way to the database is a natural extension from the database to the knowledge base, which has some theoretical and practical value.</description><identifier>ISBN: 1424467918</identifier><identifier>ISBN: 9781424467914</identifier><identifier>EISBN: 9781424467938</identifier><identifier>EISBN: 1424467934</identifier><identifier>EISBN: 9781424467921</identifier><identifier>EISBN: 1424467926</identifier><identifier>DOI: 10.1109/ISKE.2010.5680805</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial Intelligence ; Cognition ; expert system ; Expert systems ; fuzzy rule representation ; knowledge base construction ; Knowledge representation</subject><ispartof>2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering, 2010, p.106-110</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5680805$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5680805$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yongchang Ren</creatorcontrib><creatorcontrib>Xuguang Chai</creatorcontrib><creatorcontrib>Tao Xing</creatorcontrib><creatorcontrib>Xiaoji Chen</creatorcontrib><title>Fuzzy rule representation and knowledge base construction in expert system</title><title>2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering</title><addtitle>ISKE</addtitle><description>Fuzzy rule is the core of fuzzy expert system, which use relational database methods knowledge to build knowledge base, the combination of database and knowledge base is the development trend of the knowledge base. This paper describes the fuzzy rules first, including fuzzy logic, fuzzy production rules, multi-dimensional fuzzy rules; and studies the fuzzy rule representation, including the general rule representation and fuzzy rule representation; finally researches the construction of knowledge base, including the Knowledge Base System Structure and knowledge base table structure. The results show that the type knowledge of fuzzy rule reflects the relationship between the rules of deductive reasoning logical implication of the way to the database is a natural extension from the database to the knowledge base, which has some theoretical and practical value.</description><subject>Artificial Intelligence</subject><subject>Cognition</subject><subject>expert system</subject><subject>Expert systems</subject><subject>fuzzy rule representation</subject><subject>knowledge base construction</subject><subject>Knowledge representation</subject><isbn>1424467918</isbn><isbn>9781424467914</isbn><isbn>9781424467938</isbn><isbn>1424467934</isbn><isbn>9781424467921</isbn><isbn>1424467926</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j9FKwzAYhSMiqLMPIN7kBTr_NEmbXMrYdDrwwt2PNP0j1S4tSYp2T-_QeW4OHx8cOITcMpgzBvp-_faynBdwRFkqUCDPSKYrxUQhRFlprs7J9T8wdUmyGD_gGFlUvCivyPNqPBwmGsYOacAhYESfTGp7T41v6Kfvvzps3pHWJiK1vY8pjPbXt57i94Ah0TjFhPsbcuFMFzE79YxsV8vt4infvD6uFw-bvNWQcsNMIysuHJNSC2Yba7WpbdNwQNDcAjioHDgHDOtSu1oKXevCSa4rUWrFZ-Tub7ZFxN0Q2r0J0-70nv8A0UNPIQ</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Yongchang Ren</creator><creator>Xuguang Chai</creator><creator>Tao Xing</creator><creator>Xiaoji Chen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201011</creationdate><title>Fuzzy rule representation and knowledge base construction in expert system</title><author>Yongchang Ren ; Xuguang Chai ; Tao Xing ; Xiaoji Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a1ad5734f155941cdcc9abcdd30e093c00f07f0ff01eb69fb549b92f539746983</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial Intelligence</topic><topic>Cognition</topic><topic>expert system</topic><topic>Expert systems</topic><topic>fuzzy rule representation</topic><topic>knowledge base construction</topic><topic>Knowledge representation</topic><toplevel>online_resources</toplevel><creatorcontrib>Yongchang Ren</creatorcontrib><creatorcontrib>Xuguang Chai</creatorcontrib><creatorcontrib>Tao Xing</creatorcontrib><creatorcontrib>Xiaoji Chen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yongchang Ren</au><au>Xuguang Chai</au><au>Tao Xing</au><au>Xiaoji Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fuzzy rule representation and knowledge base construction in expert system</atitle><btitle>2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering</btitle><stitle>ISKE</stitle><date>2010-11</date><risdate>2010</risdate><spage>106</spage><epage>110</epage><pages>106-110</pages><isbn>1424467918</isbn><isbn>9781424467914</isbn><eisbn>9781424467938</eisbn><eisbn>1424467934</eisbn><eisbn>9781424467921</eisbn><eisbn>1424467926</eisbn><abstract>Fuzzy rule is the core of fuzzy expert system, which use relational database methods knowledge to build knowledge base, the combination of database and knowledge base is the development trend of the knowledge base. This paper describes the fuzzy rules first, including fuzzy logic, fuzzy production rules, multi-dimensional fuzzy rules; and studies the fuzzy rule representation, including the general rule representation and fuzzy rule representation; finally researches the construction of knowledge base, including the Knowledge Base System Structure and knowledge base table structure. The results show that the type knowledge of fuzzy rule reflects the relationship between the rules of deductive reasoning logical implication of the way to the database is a natural extension from the database to the knowledge base, which has some theoretical and practical value.</abstract><pub>IEEE</pub><doi>10.1109/ISKE.2010.5680805</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424467918
ispartof 2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering, 2010, p.106-110
issn
language eng
recordid cdi_ieee_primary_5680805
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial Intelligence
Cognition
expert system
Expert systems
fuzzy rule representation
knowledge base construction
Knowledge representation
title Fuzzy rule representation and knowledge base construction in expert system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A27%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fuzzy%20rule%20representation%20and%20knowledge%20base%20construction%20in%20expert%20system&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Intelligent%20Systems%20and%20Knowledge%20Engineering&rft.au=Yongchang%20Ren&rft.date=2010-11&rft.spage=106&rft.epage=110&rft.pages=106-110&rft.isbn=1424467918&rft.isbn_list=9781424467914&rft_id=info:doi/10.1109/ISKE.2010.5680805&rft_dat=%3Cieee_6IE%3E5680805%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424467938&rft.eisbn_list=1424467934&rft.eisbn_list=9781424467921&rft.eisbn_list=1424467926&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5680805&rfr_iscdi=true