Fuzzy rule representation and knowledge base construction in expert system
Fuzzy rule is the core of fuzzy expert system, which use relational database methods knowledge to build knowledge base, the combination of database and knowledge base is the development trend of the knowledge base. This paper describes the fuzzy rules first, including fuzzy logic, fuzzy production r...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110 |
---|---|
container_issue | |
container_start_page | 106 |
container_title | |
container_volume | |
creator | Yongchang Ren Xuguang Chai Tao Xing Xiaoji Chen |
description | Fuzzy rule is the core of fuzzy expert system, which use relational database methods knowledge to build knowledge base, the combination of database and knowledge base is the development trend of the knowledge base. This paper describes the fuzzy rules first, including fuzzy logic, fuzzy production rules, multi-dimensional fuzzy rules; and studies the fuzzy rule representation, including the general rule representation and fuzzy rule representation; finally researches the construction of knowledge base, including the Knowledge Base System Structure and knowledge base table structure. The results show that the type knowledge of fuzzy rule reflects the relationship between the rules of deductive reasoning logical implication of the way to the database is a natural extension from the database to the knowledge base, which has some theoretical and practical value. |
doi_str_mv | 10.1109/ISKE.2010.5680805 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5680805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5680805</ieee_id><sourcerecordid>5680805</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a1ad5734f155941cdcc9abcdd30e093c00f07f0ff01eb69fb549b92f539746983</originalsourceid><addsrcrecordid>eNo1j9FKwzAYhSMiqLMPIN7kBTr_NEmbXMrYdDrwwt2PNP0j1S4tSYp2T-_QeW4OHx8cOITcMpgzBvp-_faynBdwRFkqUCDPSKYrxUQhRFlprs7J9T8wdUmyGD_gGFlUvCivyPNqPBwmGsYOacAhYESfTGp7T41v6Kfvvzps3pHWJiK1vY8pjPbXt57i94Ah0TjFhPsbcuFMFzE79YxsV8vt4infvD6uFw-bvNWQcsNMIysuHJNSC2Yba7WpbdNwQNDcAjioHDgHDOtSu1oKXevCSa4rUWrFZ-Tub7ZFxN0Q2r0J0-70nv8A0UNPIQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fuzzy rule representation and knowledge base construction in expert system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yongchang Ren ; Xuguang Chai ; Tao Xing ; Xiaoji Chen</creator><creatorcontrib>Yongchang Ren ; Xuguang Chai ; Tao Xing ; Xiaoji Chen</creatorcontrib><description>Fuzzy rule is the core of fuzzy expert system, which use relational database methods knowledge to build knowledge base, the combination of database and knowledge base is the development trend of the knowledge base. This paper describes the fuzzy rules first, including fuzzy logic, fuzzy production rules, multi-dimensional fuzzy rules; and studies the fuzzy rule representation, including the general rule representation and fuzzy rule representation; finally researches the construction of knowledge base, including the Knowledge Base System Structure and knowledge base table structure. The results show that the type knowledge of fuzzy rule reflects the relationship between the rules of deductive reasoning logical implication of the way to the database is a natural extension from the database to the knowledge base, which has some theoretical and practical value.</description><identifier>ISBN: 1424467918</identifier><identifier>ISBN: 9781424467914</identifier><identifier>EISBN: 9781424467938</identifier><identifier>EISBN: 1424467934</identifier><identifier>EISBN: 9781424467921</identifier><identifier>EISBN: 1424467926</identifier><identifier>DOI: 10.1109/ISKE.2010.5680805</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial Intelligence ; Cognition ; expert system ; Expert systems ; fuzzy rule representation ; knowledge base construction ; Knowledge representation</subject><ispartof>2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering, 2010, p.106-110</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5680805$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5680805$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yongchang Ren</creatorcontrib><creatorcontrib>Xuguang Chai</creatorcontrib><creatorcontrib>Tao Xing</creatorcontrib><creatorcontrib>Xiaoji Chen</creatorcontrib><title>Fuzzy rule representation and knowledge base construction in expert system</title><title>2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering</title><addtitle>ISKE</addtitle><description>Fuzzy rule is the core of fuzzy expert system, which use relational database methods knowledge to build knowledge base, the combination of database and knowledge base is the development trend of the knowledge base. This paper describes the fuzzy rules first, including fuzzy logic, fuzzy production rules, multi-dimensional fuzzy rules; and studies the fuzzy rule representation, including the general rule representation and fuzzy rule representation; finally researches the construction of knowledge base, including the Knowledge Base System Structure and knowledge base table structure. The results show that the type knowledge of fuzzy rule reflects the relationship between the rules of deductive reasoning logical implication of the way to the database is a natural extension from the database to the knowledge base, which has some theoretical and practical value.</description><subject>Artificial Intelligence</subject><subject>Cognition</subject><subject>expert system</subject><subject>Expert systems</subject><subject>fuzzy rule representation</subject><subject>knowledge base construction</subject><subject>Knowledge representation</subject><isbn>1424467918</isbn><isbn>9781424467914</isbn><isbn>9781424467938</isbn><isbn>1424467934</isbn><isbn>9781424467921</isbn><isbn>1424467926</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j9FKwzAYhSMiqLMPIN7kBTr_NEmbXMrYdDrwwt2PNP0j1S4tSYp2T-_QeW4OHx8cOITcMpgzBvp-_faynBdwRFkqUCDPSKYrxUQhRFlprs7J9T8wdUmyGD_gGFlUvCivyPNqPBwmGsYOacAhYESfTGp7T41v6Kfvvzps3pHWJiK1vY8pjPbXt57i94Ah0TjFhPsbcuFMFzE79YxsV8vt4infvD6uFw-bvNWQcsNMIysuHJNSC2Yba7WpbdNwQNDcAjioHDgHDOtSu1oKXevCSa4rUWrFZ-Tub7ZFxN0Q2r0J0-70nv8A0UNPIQ</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Yongchang Ren</creator><creator>Xuguang Chai</creator><creator>Tao Xing</creator><creator>Xiaoji Chen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201011</creationdate><title>Fuzzy rule representation and knowledge base construction in expert system</title><author>Yongchang Ren ; Xuguang Chai ; Tao Xing ; Xiaoji Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a1ad5734f155941cdcc9abcdd30e093c00f07f0ff01eb69fb549b92f539746983</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial Intelligence</topic><topic>Cognition</topic><topic>expert system</topic><topic>Expert systems</topic><topic>fuzzy rule representation</topic><topic>knowledge base construction</topic><topic>Knowledge representation</topic><toplevel>online_resources</toplevel><creatorcontrib>Yongchang Ren</creatorcontrib><creatorcontrib>Xuguang Chai</creatorcontrib><creatorcontrib>Tao Xing</creatorcontrib><creatorcontrib>Xiaoji Chen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yongchang Ren</au><au>Xuguang Chai</au><au>Tao Xing</au><au>Xiaoji Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fuzzy rule representation and knowledge base construction in expert system</atitle><btitle>2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering</btitle><stitle>ISKE</stitle><date>2010-11</date><risdate>2010</risdate><spage>106</spage><epage>110</epage><pages>106-110</pages><isbn>1424467918</isbn><isbn>9781424467914</isbn><eisbn>9781424467938</eisbn><eisbn>1424467934</eisbn><eisbn>9781424467921</eisbn><eisbn>1424467926</eisbn><abstract>Fuzzy rule is the core of fuzzy expert system, which use relational database methods knowledge to build knowledge base, the combination of database and knowledge base is the development trend of the knowledge base. This paper describes the fuzzy rules first, including fuzzy logic, fuzzy production rules, multi-dimensional fuzzy rules; and studies the fuzzy rule representation, including the general rule representation and fuzzy rule representation; finally researches the construction of knowledge base, including the Knowledge Base System Structure and knowledge base table structure. The results show that the type knowledge of fuzzy rule reflects the relationship between the rules of deductive reasoning logical implication of the way to the database is a natural extension from the database to the knowledge base, which has some theoretical and practical value.</abstract><pub>IEEE</pub><doi>10.1109/ISKE.2010.5680805</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424467918 |
ispartof | 2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering, 2010, p.106-110 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5680805 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial Intelligence Cognition expert system Expert systems fuzzy rule representation knowledge base construction Knowledge representation |
title | Fuzzy rule representation and knowledge base construction in expert system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A27%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fuzzy%20rule%20representation%20and%20knowledge%20base%20construction%20in%20expert%20system&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Intelligent%20Systems%20and%20Knowledge%20Engineering&rft.au=Yongchang%20Ren&rft.date=2010-11&rft.spage=106&rft.epage=110&rft.pages=106-110&rft.isbn=1424467918&rft.isbn_list=9781424467914&rft_id=info:doi/10.1109/ISKE.2010.5680805&rft_dat=%3Cieee_6IE%3E5680805%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424467938&rft.eisbn_list=1424467934&rft.eisbn_list=9781424467921&rft.eisbn_list=1424467926&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5680805&rfr_iscdi=true |