300 bps noise robust vocoder

Within DARPA's Advanced Speech Encoding (ASE) program [1], BBN developed a series of noise-robust vocoder (NRV) algorithms and had them tested at an independent evaluation facility. With transmitted data rates as low as 300 bps, these NRV algorithms yield superior speech intelligibility, as com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Obranovich, C R, Golusky, J M, Preuss, R D, Fabbri, D R, Cruthirds, D R, Aylward, E M, Freebersyser, J A, Kolek, S R
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 303
container_issue
container_start_page 298
container_title
container_volume
creator Obranovich, C R
Golusky, J M
Preuss, R D
Fabbri, D R
Cruthirds, D R
Aylward, E M
Freebersyser, J A
Kolek, S R
description Within DARPA's Advanced Speech Encoding (ASE) program [1], BBN developed a series of noise-robust vocoder (NRV) algorithms and had them tested at an independent evaluation facility. With transmitted data rates as low as 300 bps, these NRV algorithms yield superior speech intelligibility, as compared to the 2400 bps enhanced Mixed Excitation Linear Prediction (MELPe) vocoder, in extremely harsh noise environments. NRV algorithms achieve their superior performance using an advanced wideband spectrum analysis procedure, known as spectral hypothesis testing, that compares each noisy multi-frame block of microphone output signal against hierarchically-structured speech and noise spectral trajectory codebooks. While the benefits for NRV speech coding are dramatic, spectral hypothesis testing places significant demand on encoder memory bandwidth. This created a challenge for real-time NRV operation. In 2009, BBN addressed this challenge by creating a hardware prototype with a simple coprocessor design. To assist the DSP, an FPGA supports the high-bandwidth memory access and modest number of operations needed for 300 bps real-time operation.
doi_str_mv 10.1109/MILCOM.2010.5680311
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5680311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5680311</ieee_id><sourcerecordid>5680311</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d1d0163a0f3eedaa979a1bc836743c9a60d43d5a651853709921895f7778ae513</originalsourceid><addsrcrecordid>eNo9j8FKw0AURZ9WwbbmC-oiP5D63kzezJulBKuFlG50XSaZCUTUlEwV_HsLBlf3cA9cuAArwjURuvvdtq72u7XCc8FGUBNdwIJKVZZCgnwJc0XMhWUxM8iclcmd4erfWbmBLKU3RCQlRjmaw51GzJtjyj-HPsV8HJqvdMq_h3YIcbyF686_p5hNuYTXzeNL9VzU-6dt9VAXPVk-FYECktEeOx1j8N5Z56lpRRtb6tZ5g6HUgb1hEtYWnVMkjjtrrfjIpJew-tvtY4yH49h_-PHnMB3VvxKDP8E</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>300 bps noise robust vocoder</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Obranovich, C R ; Golusky, J M ; Preuss, R D ; Fabbri, D R ; Cruthirds, D R ; Aylward, E M ; Freebersyser, J A ; Kolek, S R</creator><creatorcontrib>Obranovich, C R ; Golusky, J M ; Preuss, R D ; Fabbri, D R ; Cruthirds, D R ; Aylward, E M ; Freebersyser, J A ; Kolek, S R</creatorcontrib><description>Within DARPA's Advanced Speech Encoding (ASE) program [1], BBN developed a series of noise-robust vocoder (NRV) algorithms and had them tested at an independent evaluation facility. With transmitted data rates as low as 300 bps, these NRV algorithms yield superior speech intelligibility, as compared to the 2400 bps enhanced Mixed Excitation Linear Prediction (MELPe) vocoder, in extremely harsh noise environments. NRV algorithms achieve their superior performance using an advanced wideband spectrum analysis procedure, known as spectral hypothesis testing, that compares each noisy multi-frame block of microphone output signal against hierarchically-structured speech and noise spectral trajectory codebooks. While the benefits for NRV speech coding are dramatic, spectral hypothesis testing places significant demand on encoder memory bandwidth. This created a challenge for real-time NRV operation. In 2009, BBN addressed this challenge by creating a hardware prototype with a simple coprocessor design. To assist the DSP, an FPGA supports the high-bandwidth memory access and modest number of operations needed for 300 bps real-time operation.</description><identifier>ISSN: 2155-7578</identifier><identifier>ISBN: 9781424481781</identifier><identifier>ISBN: 1424481783</identifier><identifier>EISSN: 2155-7586</identifier><identifier>EISBN: 1424481805</identifier><identifier>EISBN: 9781424481798</identifier><identifier>EISBN: 1424481791</identifier><identifier>EISBN: 9781424481804</identifier><identifier>DOI: 10.1109/MILCOM.2010.5680311</identifier><language>eng</language><publisher>IEEE</publisher><subject>300 bps ; ASE ; MELPe ; Noise ; noise robust ; Noise robustness ; NRV ; Real time systems ; Speech ; speech coding ; Testing ; Trajectory ; vocoder ; Vocoders</subject><ispartof>2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE, 2010, p.298-303</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5680311$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5680311$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Obranovich, C R</creatorcontrib><creatorcontrib>Golusky, J M</creatorcontrib><creatorcontrib>Preuss, R D</creatorcontrib><creatorcontrib>Fabbri, D R</creatorcontrib><creatorcontrib>Cruthirds, D R</creatorcontrib><creatorcontrib>Aylward, E M</creatorcontrib><creatorcontrib>Freebersyser, J A</creatorcontrib><creatorcontrib>Kolek, S R</creatorcontrib><title>300 bps noise robust vocoder</title><title>2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE</title><addtitle>MILCOM</addtitle><description>Within DARPA's Advanced Speech Encoding (ASE) program [1], BBN developed a series of noise-robust vocoder (NRV) algorithms and had them tested at an independent evaluation facility. With transmitted data rates as low as 300 bps, these NRV algorithms yield superior speech intelligibility, as compared to the 2400 bps enhanced Mixed Excitation Linear Prediction (MELPe) vocoder, in extremely harsh noise environments. NRV algorithms achieve their superior performance using an advanced wideband spectrum analysis procedure, known as spectral hypothesis testing, that compares each noisy multi-frame block of microphone output signal against hierarchically-structured speech and noise spectral trajectory codebooks. While the benefits for NRV speech coding are dramatic, spectral hypothesis testing places significant demand on encoder memory bandwidth. This created a challenge for real-time NRV operation. In 2009, BBN addressed this challenge by creating a hardware prototype with a simple coprocessor design. To assist the DSP, an FPGA supports the high-bandwidth memory access and modest number of operations needed for 300 bps real-time operation.</description><subject>300 bps</subject><subject>ASE</subject><subject>MELPe</subject><subject>Noise</subject><subject>noise robust</subject><subject>Noise robustness</subject><subject>NRV</subject><subject>Real time systems</subject><subject>Speech</subject><subject>speech coding</subject><subject>Testing</subject><subject>Trajectory</subject><subject>vocoder</subject><subject>Vocoders</subject><issn>2155-7578</issn><issn>2155-7586</issn><isbn>9781424481781</isbn><isbn>1424481783</isbn><isbn>1424481805</isbn><isbn>9781424481798</isbn><isbn>1424481791</isbn><isbn>9781424481804</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j8FKw0AURZ9WwbbmC-oiP5D63kzezJulBKuFlG50XSaZCUTUlEwV_HsLBlf3cA9cuAArwjURuvvdtq72u7XCc8FGUBNdwIJKVZZCgnwJc0XMhWUxM8iclcmd4erfWbmBLKU3RCQlRjmaw51GzJtjyj-HPsV8HJqvdMq_h3YIcbyF686_p5hNuYTXzeNL9VzU-6dt9VAXPVk-FYECktEeOx1j8N5Z56lpRRtb6tZ5g6HUgb1hEtYWnVMkjjtrrfjIpJew-tvtY4yH49h_-PHnMB3VvxKDP8E</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Obranovich, C R</creator><creator>Golusky, J M</creator><creator>Preuss, R D</creator><creator>Fabbri, D R</creator><creator>Cruthirds, D R</creator><creator>Aylward, E M</creator><creator>Freebersyser, J A</creator><creator>Kolek, S R</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201010</creationdate><title>300 bps noise robust vocoder</title><author>Obranovich, C R ; Golusky, J M ; Preuss, R D ; Fabbri, D R ; Cruthirds, D R ; Aylward, E M ; Freebersyser, J A ; Kolek, S R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d1d0163a0f3eedaa979a1bc836743c9a60d43d5a651853709921895f7778ae513</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>300 bps</topic><topic>ASE</topic><topic>MELPe</topic><topic>Noise</topic><topic>noise robust</topic><topic>Noise robustness</topic><topic>NRV</topic><topic>Real time systems</topic><topic>Speech</topic><topic>speech coding</topic><topic>Testing</topic><topic>Trajectory</topic><topic>vocoder</topic><topic>Vocoders</topic><toplevel>online_resources</toplevel><creatorcontrib>Obranovich, C R</creatorcontrib><creatorcontrib>Golusky, J M</creatorcontrib><creatorcontrib>Preuss, R D</creatorcontrib><creatorcontrib>Fabbri, D R</creatorcontrib><creatorcontrib>Cruthirds, D R</creatorcontrib><creatorcontrib>Aylward, E M</creatorcontrib><creatorcontrib>Freebersyser, J A</creatorcontrib><creatorcontrib>Kolek, S R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Obranovich, C R</au><au>Golusky, J M</au><au>Preuss, R D</au><au>Fabbri, D R</au><au>Cruthirds, D R</au><au>Aylward, E M</au><au>Freebersyser, J A</au><au>Kolek, S R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>300 bps noise robust vocoder</atitle><btitle>2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE</btitle><stitle>MILCOM</stitle><date>2010-10</date><risdate>2010</risdate><spage>298</spage><epage>303</epage><pages>298-303</pages><issn>2155-7578</issn><eissn>2155-7586</eissn><isbn>9781424481781</isbn><isbn>1424481783</isbn><eisbn>1424481805</eisbn><eisbn>9781424481798</eisbn><eisbn>1424481791</eisbn><eisbn>9781424481804</eisbn><abstract>Within DARPA's Advanced Speech Encoding (ASE) program [1], BBN developed a series of noise-robust vocoder (NRV) algorithms and had them tested at an independent evaluation facility. With transmitted data rates as low as 300 bps, these NRV algorithms yield superior speech intelligibility, as compared to the 2400 bps enhanced Mixed Excitation Linear Prediction (MELPe) vocoder, in extremely harsh noise environments. NRV algorithms achieve their superior performance using an advanced wideband spectrum analysis procedure, known as spectral hypothesis testing, that compares each noisy multi-frame block of microphone output signal against hierarchically-structured speech and noise spectral trajectory codebooks. While the benefits for NRV speech coding are dramatic, spectral hypothesis testing places significant demand on encoder memory bandwidth. This created a challenge for real-time NRV operation. In 2009, BBN addressed this challenge by creating a hardware prototype with a simple coprocessor design. To assist the DSP, an FPGA supports the high-bandwidth memory access and modest number of operations needed for 300 bps real-time operation.</abstract><pub>IEEE</pub><doi>10.1109/MILCOM.2010.5680311</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2155-7578
ispartof 2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE, 2010, p.298-303
issn 2155-7578
2155-7586
language eng
recordid cdi_ieee_primary_5680311
source IEEE Electronic Library (IEL) Conference Proceedings
subjects 300 bps
ASE
MELPe
Noise
noise robust
Noise robustness
NRV
Real time systems
Speech
speech coding
Testing
Trajectory
vocoder
Vocoders
title 300 bps noise robust vocoder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A46%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=300%20bps%20noise%20robust%20vocoder&rft.btitle=2010%20-%20MILCOM%202010%20MILITARY%20COMMUNICATIONS%20CONFERENCE&rft.au=Obranovich,%20C%20R&rft.date=2010-10&rft.spage=298&rft.epage=303&rft.pages=298-303&rft.issn=2155-7578&rft.eissn=2155-7586&rft.isbn=9781424481781&rft.isbn_list=1424481783&rft_id=info:doi/10.1109/MILCOM.2010.5680311&rft_dat=%3Cieee_6IE%3E5680311%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424481805&rft.eisbn_list=9781424481798&rft.eisbn_list=1424481791&rft.eisbn_list=9781424481804&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5680311&rfr_iscdi=true