300 bps noise robust vocoder
Within DARPA's Advanced Speech Encoding (ASE) program [1], BBN developed a series of noise-robust vocoder (NRV) algorithms and had them tested at an independent evaluation facility. With transmitted data rates as low as 300 bps, these NRV algorithms yield superior speech intelligibility, as com...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 303 |
---|---|
container_issue | |
container_start_page | 298 |
container_title | |
container_volume | |
creator | Obranovich, C R Golusky, J M Preuss, R D Fabbri, D R Cruthirds, D R Aylward, E M Freebersyser, J A Kolek, S R |
description | Within DARPA's Advanced Speech Encoding (ASE) program [1], BBN developed a series of noise-robust vocoder (NRV) algorithms and had them tested at an independent evaluation facility. With transmitted data rates as low as 300 bps, these NRV algorithms yield superior speech intelligibility, as compared to the 2400 bps enhanced Mixed Excitation Linear Prediction (MELPe) vocoder, in extremely harsh noise environments. NRV algorithms achieve their superior performance using an advanced wideband spectrum analysis procedure, known as spectral hypothesis testing, that compares each noisy multi-frame block of microphone output signal against hierarchically-structured speech and noise spectral trajectory codebooks. While the benefits for NRV speech coding are dramatic, spectral hypothesis testing places significant demand on encoder memory bandwidth. This created a challenge for real-time NRV operation. In 2009, BBN addressed this challenge by creating a hardware prototype with a simple coprocessor design. To assist the DSP, an FPGA supports the high-bandwidth memory access and modest number of operations needed for 300 bps real-time operation. |
doi_str_mv | 10.1109/MILCOM.2010.5680311 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5680311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5680311</ieee_id><sourcerecordid>5680311</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d1d0163a0f3eedaa979a1bc836743c9a60d43d5a651853709921895f7778ae513</originalsourceid><addsrcrecordid>eNo9j8FKw0AURZ9WwbbmC-oiP5D63kzezJulBKuFlG50XSaZCUTUlEwV_HsLBlf3cA9cuAArwjURuvvdtq72u7XCc8FGUBNdwIJKVZZCgnwJc0XMhWUxM8iclcmd4erfWbmBLKU3RCQlRjmaw51GzJtjyj-HPsV8HJqvdMq_h3YIcbyF686_p5hNuYTXzeNL9VzU-6dt9VAXPVk-FYECktEeOx1j8N5Z56lpRRtb6tZ5g6HUgb1hEtYWnVMkjjtrrfjIpJew-tvtY4yH49h_-PHnMB3VvxKDP8E</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>300 bps noise robust vocoder</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Obranovich, C R ; Golusky, J M ; Preuss, R D ; Fabbri, D R ; Cruthirds, D R ; Aylward, E M ; Freebersyser, J A ; Kolek, S R</creator><creatorcontrib>Obranovich, C R ; Golusky, J M ; Preuss, R D ; Fabbri, D R ; Cruthirds, D R ; Aylward, E M ; Freebersyser, J A ; Kolek, S R</creatorcontrib><description>Within DARPA's Advanced Speech Encoding (ASE) program [1], BBN developed a series of noise-robust vocoder (NRV) algorithms and had them tested at an independent evaluation facility. With transmitted data rates as low as 300 bps, these NRV algorithms yield superior speech intelligibility, as compared to the 2400 bps enhanced Mixed Excitation Linear Prediction (MELPe) vocoder, in extremely harsh noise environments. NRV algorithms achieve their superior performance using an advanced wideband spectrum analysis procedure, known as spectral hypothesis testing, that compares each noisy multi-frame block of microphone output signal against hierarchically-structured speech and noise spectral trajectory codebooks. While the benefits for NRV speech coding are dramatic, spectral hypothesis testing places significant demand on encoder memory bandwidth. This created a challenge for real-time NRV operation. In 2009, BBN addressed this challenge by creating a hardware prototype with a simple coprocessor design. To assist the DSP, an FPGA supports the high-bandwidth memory access and modest number of operations needed for 300 bps real-time operation.</description><identifier>ISSN: 2155-7578</identifier><identifier>ISBN: 9781424481781</identifier><identifier>ISBN: 1424481783</identifier><identifier>EISSN: 2155-7586</identifier><identifier>EISBN: 1424481805</identifier><identifier>EISBN: 9781424481798</identifier><identifier>EISBN: 1424481791</identifier><identifier>EISBN: 9781424481804</identifier><identifier>DOI: 10.1109/MILCOM.2010.5680311</identifier><language>eng</language><publisher>IEEE</publisher><subject>300 bps ; ASE ; MELPe ; Noise ; noise robust ; Noise robustness ; NRV ; Real time systems ; Speech ; speech coding ; Testing ; Trajectory ; vocoder ; Vocoders</subject><ispartof>2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE, 2010, p.298-303</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5680311$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5680311$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Obranovich, C R</creatorcontrib><creatorcontrib>Golusky, J M</creatorcontrib><creatorcontrib>Preuss, R D</creatorcontrib><creatorcontrib>Fabbri, D R</creatorcontrib><creatorcontrib>Cruthirds, D R</creatorcontrib><creatorcontrib>Aylward, E M</creatorcontrib><creatorcontrib>Freebersyser, J A</creatorcontrib><creatorcontrib>Kolek, S R</creatorcontrib><title>300 bps noise robust vocoder</title><title>2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE</title><addtitle>MILCOM</addtitle><description>Within DARPA's Advanced Speech Encoding (ASE) program [1], BBN developed a series of noise-robust vocoder (NRV) algorithms and had them tested at an independent evaluation facility. With transmitted data rates as low as 300 bps, these NRV algorithms yield superior speech intelligibility, as compared to the 2400 bps enhanced Mixed Excitation Linear Prediction (MELPe) vocoder, in extremely harsh noise environments. NRV algorithms achieve their superior performance using an advanced wideband spectrum analysis procedure, known as spectral hypothesis testing, that compares each noisy multi-frame block of microphone output signal against hierarchically-structured speech and noise spectral trajectory codebooks. While the benefits for NRV speech coding are dramatic, spectral hypothesis testing places significant demand on encoder memory bandwidth. This created a challenge for real-time NRV operation. In 2009, BBN addressed this challenge by creating a hardware prototype with a simple coprocessor design. To assist the DSP, an FPGA supports the high-bandwidth memory access and modest number of operations needed for 300 bps real-time operation.</description><subject>300 bps</subject><subject>ASE</subject><subject>MELPe</subject><subject>Noise</subject><subject>noise robust</subject><subject>Noise robustness</subject><subject>NRV</subject><subject>Real time systems</subject><subject>Speech</subject><subject>speech coding</subject><subject>Testing</subject><subject>Trajectory</subject><subject>vocoder</subject><subject>Vocoders</subject><issn>2155-7578</issn><issn>2155-7586</issn><isbn>9781424481781</isbn><isbn>1424481783</isbn><isbn>1424481805</isbn><isbn>9781424481798</isbn><isbn>1424481791</isbn><isbn>9781424481804</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j8FKw0AURZ9WwbbmC-oiP5D63kzezJulBKuFlG50XSaZCUTUlEwV_HsLBlf3cA9cuAArwjURuvvdtq72u7XCc8FGUBNdwIJKVZZCgnwJc0XMhWUxM8iclcmd4erfWbmBLKU3RCQlRjmaw51GzJtjyj-HPsV8HJqvdMq_h3YIcbyF686_p5hNuYTXzeNL9VzU-6dt9VAXPVk-FYECktEeOx1j8N5Z56lpRRtb6tZ5g6HUgb1hEtYWnVMkjjtrrfjIpJew-tvtY4yH49h_-PHnMB3VvxKDP8E</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Obranovich, C R</creator><creator>Golusky, J M</creator><creator>Preuss, R D</creator><creator>Fabbri, D R</creator><creator>Cruthirds, D R</creator><creator>Aylward, E M</creator><creator>Freebersyser, J A</creator><creator>Kolek, S R</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201010</creationdate><title>300 bps noise robust vocoder</title><author>Obranovich, C R ; Golusky, J M ; Preuss, R D ; Fabbri, D R ; Cruthirds, D R ; Aylward, E M ; Freebersyser, J A ; Kolek, S R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d1d0163a0f3eedaa979a1bc836743c9a60d43d5a651853709921895f7778ae513</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>300 bps</topic><topic>ASE</topic><topic>MELPe</topic><topic>Noise</topic><topic>noise robust</topic><topic>Noise robustness</topic><topic>NRV</topic><topic>Real time systems</topic><topic>Speech</topic><topic>speech coding</topic><topic>Testing</topic><topic>Trajectory</topic><topic>vocoder</topic><topic>Vocoders</topic><toplevel>online_resources</toplevel><creatorcontrib>Obranovich, C R</creatorcontrib><creatorcontrib>Golusky, J M</creatorcontrib><creatorcontrib>Preuss, R D</creatorcontrib><creatorcontrib>Fabbri, D R</creatorcontrib><creatorcontrib>Cruthirds, D R</creatorcontrib><creatorcontrib>Aylward, E M</creatorcontrib><creatorcontrib>Freebersyser, J A</creatorcontrib><creatorcontrib>Kolek, S R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Obranovich, C R</au><au>Golusky, J M</au><au>Preuss, R D</au><au>Fabbri, D R</au><au>Cruthirds, D R</au><au>Aylward, E M</au><au>Freebersyser, J A</au><au>Kolek, S R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>300 bps noise robust vocoder</atitle><btitle>2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE</btitle><stitle>MILCOM</stitle><date>2010-10</date><risdate>2010</risdate><spage>298</spage><epage>303</epage><pages>298-303</pages><issn>2155-7578</issn><eissn>2155-7586</eissn><isbn>9781424481781</isbn><isbn>1424481783</isbn><eisbn>1424481805</eisbn><eisbn>9781424481798</eisbn><eisbn>1424481791</eisbn><eisbn>9781424481804</eisbn><abstract>Within DARPA's Advanced Speech Encoding (ASE) program [1], BBN developed a series of noise-robust vocoder (NRV) algorithms and had them tested at an independent evaluation facility. With transmitted data rates as low as 300 bps, these NRV algorithms yield superior speech intelligibility, as compared to the 2400 bps enhanced Mixed Excitation Linear Prediction (MELPe) vocoder, in extremely harsh noise environments. NRV algorithms achieve their superior performance using an advanced wideband spectrum analysis procedure, known as spectral hypothesis testing, that compares each noisy multi-frame block of microphone output signal against hierarchically-structured speech and noise spectral trajectory codebooks. While the benefits for NRV speech coding are dramatic, spectral hypothesis testing places significant demand on encoder memory bandwidth. This created a challenge for real-time NRV operation. In 2009, BBN addressed this challenge by creating a hardware prototype with a simple coprocessor design. To assist the DSP, an FPGA supports the high-bandwidth memory access and modest number of operations needed for 300 bps real-time operation.</abstract><pub>IEEE</pub><doi>10.1109/MILCOM.2010.5680311</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2155-7578 |
ispartof | 2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE, 2010, p.298-303 |
issn | 2155-7578 2155-7586 |
language | eng |
recordid | cdi_ieee_primary_5680311 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | 300 bps ASE MELPe Noise noise robust Noise robustness NRV Real time systems Speech speech coding Testing Trajectory vocoder Vocoders |
title | 300 bps noise robust vocoder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A46%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=300%20bps%20noise%20robust%20vocoder&rft.btitle=2010%20-%20MILCOM%202010%20MILITARY%20COMMUNICATIONS%20CONFERENCE&rft.au=Obranovich,%20C%20R&rft.date=2010-10&rft.spage=298&rft.epage=303&rft.pages=298-303&rft.issn=2155-7578&rft.eissn=2155-7586&rft.isbn=9781424481781&rft.isbn_list=1424481783&rft_id=info:doi/10.1109/MILCOM.2010.5680311&rft_dat=%3Cieee_6IE%3E5680311%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424481805&rft.eisbn_list=9781424481798&rft.eisbn_list=1424481791&rft.eisbn_list=9781424481804&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5680311&rfr_iscdi=true |