Estimating behavior of a GA-based topology control for self-spreading nodes in MANETs
This paper presents a dynamical system model for FGA, a force-based genetic algorithm, which is used as decentralized topology control mechanism among active running software agents to achieve a uniform spread of autonomous mobile nodes over an unknown geographical area. Using only local information...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1410 |
---|---|
container_issue | |
container_start_page | 1405 |
container_title | |
container_volume | |
creator | Urrea, E Şahin, Cem Şafak Uyar, M Ümit Conner, M Bertoli, G Pizzo, C |
description | This paper presents a dynamical system model for FGA, a force-based genetic algorithm, which is used as decentralized topology control mechanism among active running software agents to achieve a uniform spread of autonomous mobile nodes over an unknown geographical area. Using only local information, FGA guides each node to select a fitter location, speed and direction among exponentially large number of choices, converging towards a uniform node distribution. By treating a genetic algorithm (GA) as a dynamical system we can analyze it in terms of its trajectory in the space of possible populations. We use Vose's theoretical model to calculate the cumulative effects of GA operators of selection, mutation, and crossover as a population evolves through generations. We show that FGA converges toward a significantly higher area coverage as it evolves. |
doi_str_mv | 10.1109/MILCOM.2010.5680143 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5680143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5680143</ieee_id><sourcerecordid>5680143</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d84805cffa0d52d3232cfdbb6171eb0ce8c82f07d4c947c04049d29051f9ad4f3</originalsourceid><addsrcrecordid>eNo9UMtuwjAQdF9SKc0XcPEPhO46dmwfEaIUiZQLnJHjB02VxiiOKvH3TVXU065mdkYzS8gMYY4I-qXabJe7as5gBESpAHlxQ56QM84VKhC3ZMJQiFwKVd6RTEt15cbl_p-T6pFkKX0CADJVMo0TclilofkyQ9OdaO0_zHcTexoDNXS9yGuTvKNDPMc2ni7Uxm7oY0vDeJJ8G_J07r1xv9IuOp9o09Fq8b7ap2fyEEybfHadU3J4Xe2Xb_l2t94sF9u8QSmG3Ck-hrchGHCCuYIVzAZX1yVK9DVYr6xiAaTjVnNpgQPXjmkQGLRxPBRTMvvzbbz3x3M_Nukvx-uHih8ivFXl</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Estimating behavior of a GA-based topology control for self-spreading nodes in MANETs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Urrea, E ; Şahin, Cem Şafak ; Uyar, M Ümit ; Conner, M ; Bertoli, G ; Pizzo, C</creator><creatorcontrib>Urrea, E ; Şahin, Cem Şafak ; Uyar, M Ümit ; Conner, M ; Bertoli, G ; Pizzo, C</creatorcontrib><description>This paper presents a dynamical system model for FGA, a force-based genetic algorithm, which is used as decentralized topology control mechanism among active running software agents to achieve a uniform spread of autonomous mobile nodes over an unknown geographical area. Using only local information, FGA guides each node to select a fitter location, speed and direction among exponentially large number of choices, converging towards a uniform node distribution. By treating a genetic algorithm (GA) as a dynamical system we can analyze it in terms of its trajectory in the space of possible populations. We use Vose's theoretical model to calculate the cumulative effects of GA operators of selection, mutation, and crossover as a population evolves through generations. We show that FGA converges toward a significantly higher area coverage as it evolves.</description><identifier>ISSN: 2155-7578</identifier><identifier>ISBN: 9781424481781</identifier><identifier>ISBN: 1424481783</identifier><identifier>EISSN: 2155-7586</identifier><identifier>EISBN: 1424481805</identifier><identifier>EISBN: 9781424481798</identifier><identifier>EISBN: 1424481791</identifier><identifier>EISBN: 9781424481804</identifier><identifier>DOI: 10.1109/MILCOM.2010.5680143</identifier><language>eng</language><publisher>IEEE</publisher><subject>Ad hoc networks ; Artificial neural networks ; Biological cells ; Force ; Gallium ; Genetic Algorithms ; MANET ; Mobile communication ; Nickel ; Self-organization</subject><ispartof>2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE, 2010, p.1405-1410</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5680143$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5680143$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Urrea, E</creatorcontrib><creatorcontrib>Şahin, Cem Şafak</creatorcontrib><creatorcontrib>Uyar, M Ümit</creatorcontrib><creatorcontrib>Conner, M</creatorcontrib><creatorcontrib>Bertoli, G</creatorcontrib><creatorcontrib>Pizzo, C</creatorcontrib><title>Estimating behavior of a GA-based topology control for self-spreading nodes in MANETs</title><title>2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE</title><addtitle>MILCOM</addtitle><description>This paper presents a dynamical system model for FGA, a force-based genetic algorithm, which is used as decentralized topology control mechanism among active running software agents to achieve a uniform spread of autonomous mobile nodes over an unknown geographical area. Using only local information, FGA guides each node to select a fitter location, speed and direction among exponentially large number of choices, converging towards a uniform node distribution. By treating a genetic algorithm (GA) as a dynamical system we can analyze it in terms of its trajectory in the space of possible populations. We use Vose's theoretical model to calculate the cumulative effects of GA operators of selection, mutation, and crossover as a population evolves through generations. We show that FGA converges toward a significantly higher area coverage as it evolves.</description><subject>Ad hoc networks</subject><subject>Artificial neural networks</subject><subject>Biological cells</subject><subject>Force</subject><subject>Gallium</subject><subject>Genetic Algorithms</subject><subject>MANET</subject><subject>Mobile communication</subject><subject>Nickel</subject><subject>Self-organization</subject><issn>2155-7578</issn><issn>2155-7586</issn><isbn>9781424481781</isbn><isbn>1424481783</isbn><isbn>1424481805</isbn><isbn>9781424481798</isbn><isbn>1424481791</isbn><isbn>9781424481804</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9UMtuwjAQdF9SKc0XcPEPhO46dmwfEaIUiZQLnJHjB02VxiiOKvH3TVXU065mdkYzS8gMYY4I-qXabJe7as5gBESpAHlxQ56QM84VKhC3ZMJQiFwKVd6RTEt15cbl_p-T6pFkKX0CADJVMo0TclilofkyQ9OdaO0_zHcTexoDNXS9yGuTvKNDPMc2ni7Uxm7oY0vDeJJ8G_J07r1xv9IuOp9o09Fq8b7ap2fyEEybfHadU3J4Xe2Xb_l2t94sF9u8QSmG3Ck-hrchGHCCuYIVzAZX1yVK9DVYr6xiAaTjVnNpgQPXjmkQGLRxPBRTMvvzbbz3x3M_Nukvx-uHih8ivFXl</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Urrea, E</creator><creator>Şahin, Cem Şafak</creator><creator>Uyar, M Ümit</creator><creator>Conner, M</creator><creator>Bertoli, G</creator><creator>Pizzo, C</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201010</creationdate><title>Estimating behavior of a GA-based topology control for self-spreading nodes in MANETs</title><author>Urrea, E ; Şahin, Cem Şafak ; Uyar, M Ümit ; Conner, M ; Bertoli, G ; Pizzo, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d84805cffa0d52d3232cfdbb6171eb0ce8c82f07d4c947c04049d29051f9ad4f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Ad hoc networks</topic><topic>Artificial neural networks</topic><topic>Biological cells</topic><topic>Force</topic><topic>Gallium</topic><topic>Genetic Algorithms</topic><topic>MANET</topic><topic>Mobile communication</topic><topic>Nickel</topic><topic>Self-organization</topic><toplevel>online_resources</toplevel><creatorcontrib>Urrea, E</creatorcontrib><creatorcontrib>Şahin, Cem Şafak</creatorcontrib><creatorcontrib>Uyar, M Ümit</creatorcontrib><creatorcontrib>Conner, M</creatorcontrib><creatorcontrib>Bertoli, G</creatorcontrib><creatorcontrib>Pizzo, C</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Urrea, E</au><au>Şahin, Cem Şafak</au><au>Uyar, M Ümit</au><au>Conner, M</au><au>Bertoli, G</au><au>Pizzo, C</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Estimating behavior of a GA-based topology control for self-spreading nodes in MANETs</atitle><btitle>2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE</btitle><stitle>MILCOM</stitle><date>2010-10</date><risdate>2010</risdate><spage>1405</spage><epage>1410</epage><pages>1405-1410</pages><issn>2155-7578</issn><eissn>2155-7586</eissn><isbn>9781424481781</isbn><isbn>1424481783</isbn><eisbn>1424481805</eisbn><eisbn>9781424481798</eisbn><eisbn>1424481791</eisbn><eisbn>9781424481804</eisbn><abstract>This paper presents a dynamical system model for FGA, a force-based genetic algorithm, which is used as decentralized topology control mechanism among active running software agents to achieve a uniform spread of autonomous mobile nodes over an unknown geographical area. Using only local information, FGA guides each node to select a fitter location, speed and direction among exponentially large number of choices, converging towards a uniform node distribution. By treating a genetic algorithm (GA) as a dynamical system we can analyze it in terms of its trajectory in the space of possible populations. We use Vose's theoretical model to calculate the cumulative effects of GA operators of selection, mutation, and crossover as a population evolves through generations. We show that FGA converges toward a significantly higher area coverage as it evolves.</abstract><pub>IEEE</pub><doi>10.1109/MILCOM.2010.5680143</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2155-7578 |
ispartof | 2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE, 2010, p.1405-1410 |
issn | 2155-7578 2155-7586 |
language | eng |
recordid | cdi_ieee_primary_5680143 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Ad hoc networks Artificial neural networks Biological cells Force Gallium Genetic Algorithms MANET Mobile communication Nickel Self-organization |
title | Estimating behavior of a GA-based topology control for self-spreading nodes in MANETs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Estimating%20behavior%20of%20a%20GA-based%20topology%20control%20for%20self-spreading%20nodes%20in%20MANETs&rft.btitle=2010%20-%20MILCOM%202010%20MILITARY%20COMMUNICATIONS%20CONFERENCE&rft.au=Urrea,%20E&rft.date=2010-10&rft.spage=1405&rft.epage=1410&rft.pages=1405-1410&rft.issn=2155-7578&rft.eissn=2155-7586&rft.isbn=9781424481781&rft.isbn_list=1424481783&rft_id=info:doi/10.1109/MILCOM.2010.5680143&rft_dat=%3Cieee_6IE%3E5680143%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424481805&rft.eisbn_list=9781424481798&rft.eisbn_list=1424481791&rft.eisbn_list=9781424481804&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5680143&rfr_iscdi=true |