Reinsch's smoothing spline simulation metamodels
Metamodels have been used frequently by the simulation community. However, not much research has been done with nonparametric metamodels compared with parametric metamodels. In this paper, smoothing splines for performing nonparametric metamodeling are presented. The use of smoothing splines on meta...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 934 |
---|---|
container_issue | |
container_start_page | 925 |
container_title | |
container_volume | |
creator | Santos, Pedro R Santos, Isabel R |
description | Metamodels have been used frequently by the simulation community. However, not much research has been done with nonparametric metamodels compared with parametric metamodels. In this paper, smoothing splines for performing nonparametric metamodeling are presented. The use of smoothing splines on metamodeling fitting may provide functions that better approximate the behavior of the target simulation model, compared with linear and nonlinear regression metamodels. The smoothing splines tolerance parameter can be used to tune the smoothness of the resulting metamodel. A good experimental design is crucial for obtaining a better smoothing spline metamodel fitting, as illustrated in the examples. |
doi_str_mv | 10.1109/WSC.2010.5679097 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5679097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5679097</ieee_id><sourcerecordid>5679097</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-2a5d8e4d2ea9fda479d62d51cea93c484da57c4a24a5ceee301192fafd8b77c3</originalsourceid><addsrcrecordid>eNo1jztLA0EURq8vcBPTCzbbWW2cO-8pZYkPCAgasAzXmVkzso-QWQv_vQvG6uNw4MAHcI1sicjc3ftbveRsIqWNY86cwAwll9JZrfAUClTKVlIwdQYLZ-y_0_ocCmYdVsYIfQmznL8YQ6uQF8BeY-qz393mMnfDMO5S_1nmfZv6WObUfbc0pqEvuzhSN4TY5iu4aKjNcXHcOWweVpv6qVq_PD7X9-sqcTRjxUkFG2XgkVwTSBoXNA8K_cTCSysDKeMlcUnKxxgFQ3S8oSbYD2O8mMPNXzZNcrs_pI4OP9vjcfEL-ztI3g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reinsch's smoothing spline simulation metamodels</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Santos, Pedro R ; Santos, Isabel R</creator><creatorcontrib>Santos, Pedro R ; Santos, Isabel R</creatorcontrib><description>Metamodels have been used frequently by the simulation community. However, not much research has been done with nonparametric metamodels compared with parametric metamodels. In this paper, smoothing splines for performing nonparametric metamodeling are presented. The use of smoothing splines on metamodeling fitting may provide functions that better approximate the behavior of the target simulation model, compared with linear and nonlinear regression metamodels. The smoothing splines tolerance parameter can be used to tune the smoothness of the resulting metamodel. A good experimental design is crucial for obtaining a better smoothing spline metamodel fitting, as illustrated in the examples.</description><identifier>ISSN: 0891-7736</identifier><identifier>ISBN: 9781424498666</identifier><identifier>ISBN: 142449866X</identifier><identifier>EISSN: 1558-4305</identifier><identifier>EISBN: 1424498651</identifier><identifier>EISBN: 1424498643</identifier><identifier>EISBN: 9781424498642</identifier><identifier>EISBN: 9781424498659</identifier><identifier>DOI: 10.1109/WSC.2010.5679097</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data models ; Least squares approximation ; Mathematical model ; Polynomials ; Smoothing methods ; Spline</subject><ispartof>Proceedings of the 2010 Winter Simulation Conference, 2010, p.925-934</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5679097$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5679097$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Santos, Pedro R</creatorcontrib><creatorcontrib>Santos, Isabel R</creatorcontrib><title>Reinsch's smoothing spline simulation metamodels</title><title>Proceedings of the 2010 Winter Simulation Conference</title><addtitle>WSC</addtitle><description>Metamodels have been used frequently by the simulation community. However, not much research has been done with nonparametric metamodels compared with parametric metamodels. In this paper, smoothing splines for performing nonparametric metamodeling are presented. The use of smoothing splines on metamodeling fitting may provide functions that better approximate the behavior of the target simulation model, compared with linear and nonlinear regression metamodels. The smoothing splines tolerance parameter can be used to tune the smoothness of the resulting metamodel. A good experimental design is crucial for obtaining a better smoothing spline metamodel fitting, as illustrated in the examples.</description><subject>Data models</subject><subject>Least squares approximation</subject><subject>Mathematical model</subject><subject>Polynomials</subject><subject>Smoothing methods</subject><subject>Spline</subject><issn>0891-7736</issn><issn>1558-4305</issn><isbn>9781424498666</isbn><isbn>142449866X</isbn><isbn>1424498651</isbn><isbn>1424498643</isbn><isbn>9781424498642</isbn><isbn>9781424498659</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1jztLA0EURq8vcBPTCzbbWW2cO-8pZYkPCAgasAzXmVkzso-QWQv_vQvG6uNw4MAHcI1sicjc3ftbveRsIqWNY86cwAwll9JZrfAUClTKVlIwdQYLZ-y_0_ocCmYdVsYIfQmznL8YQ6uQF8BeY-qz393mMnfDMO5S_1nmfZv6WObUfbc0pqEvuzhSN4TY5iu4aKjNcXHcOWweVpv6qVq_PD7X9-sqcTRjxUkFG2XgkVwTSBoXNA8K_cTCSysDKeMlcUnKxxgFQ3S8oSbYD2O8mMPNXzZNcrs_pI4OP9vjcfEL-ztI3g</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Santos, Pedro R</creator><creator>Santos, Isabel R</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20100101</creationdate><title>Reinsch's smoothing spline simulation metamodels</title><author>Santos, Pedro R ; Santos, Isabel R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-2a5d8e4d2ea9fda479d62d51cea93c484da57c4a24a5ceee301192fafd8b77c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Data models</topic><topic>Least squares approximation</topic><topic>Mathematical model</topic><topic>Polynomials</topic><topic>Smoothing methods</topic><topic>Spline</topic><toplevel>online_resources</toplevel><creatorcontrib>Santos, Pedro R</creatorcontrib><creatorcontrib>Santos, Isabel R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Santos, Pedro R</au><au>Santos, Isabel R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reinsch's smoothing spline simulation metamodels</atitle><btitle>Proceedings of the 2010 Winter Simulation Conference</btitle><stitle>WSC</stitle><date>2010-01-01</date><risdate>2010</risdate><spage>925</spage><epage>934</epage><pages>925-934</pages><issn>0891-7736</issn><eissn>1558-4305</eissn><isbn>9781424498666</isbn><isbn>142449866X</isbn><eisbn>1424498651</eisbn><eisbn>1424498643</eisbn><eisbn>9781424498642</eisbn><eisbn>9781424498659</eisbn><abstract>Metamodels have been used frequently by the simulation community. However, not much research has been done with nonparametric metamodels compared with parametric metamodels. In this paper, smoothing splines for performing nonparametric metamodeling are presented. The use of smoothing splines on metamodeling fitting may provide functions that better approximate the behavior of the target simulation model, compared with linear and nonlinear regression metamodels. The smoothing splines tolerance parameter can be used to tune the smoothness of the resulting metamodel. A good experimental design is crucial for obtaining a better smoothing spline metamodel fitting, as illustrated in the examples.</abstract><pub>IEEE</pub><doi>10.1109/WSC.2010.5679097</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0891-7736 |
ispartof | Proceedings of the 2010 Winter Simulation Conference, 2010, p.925-934 |
issn | 0891-7736 1558-4305 |
language | eng |
recordid | cdi_ieee_primary_5679097 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Data models Least squares approximation Mathematical model Polynomials Smoothing methods Spline |
title | Reinsch's smoothing spline simulation metamodels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reinsch's%20smoothing%20spline%20simulation%20metamodels&rft.btitle=Proceedings%20of%20the%202010%20Winter%20Simulation%20Conference&rft.au=Santos,%20Pedro%20R&rft.date=2010-01-01&rft.spage=925&rft.epage=934&rft.pages=925-934&rft.issn=0891-7736&rft.eissn=1558-4305&rft.isbn=9781424498666&rft.isbn_list=142449866X&rft_id=info:doi/10.1109/WSC.2010.5679097&rft_dat=%3Cieee_6IE%3E5679097%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424498651&rft.eisbn_list=1424498643&rft.eisbn_list=9781424498642&rft.eisbn_list=9781424498659&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5679097&rfr_iscdi=true |