Reinsch's smoothing spline simulation metamodels

Metamodels have been used frequently by the simulation community. However, not much research has been done with nonparametric metamodels compared with parametric metamodels. In this paper, smoothing splines for performing nonparametric metamodeling are presented. The use of smoothing splines on meta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Santos, Pedro R, Santos, Isabel R
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 934
container_issue
container_start_page 925
container_title
container_volume
creator Santos, Pedro R
Santos, Isabel R
description Metamodels have been used frequently by the simulation community. However, not much research has been done with nonparametric metamodels compared with parametric metamodels. In this paper, smoothing splines for performing nonparametric metamodeling are presented. The use of smoothing splines on metamodeling fitting may provide functions that better approximate the behavior of the target simulation model, compared with linear and nonlinear regression metamodels. The smoothing splines tolerance parameter can be used to tune the smoothness of the resulting metamodel. A good experimental design is crucial for obtaining a better smoothing spline metamodel fitting, as illustrated in the examples.
doi_str_mv 10.1109/WSC.2010.5679097
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5679097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5679097</ieee_id><sourcerecordid>5679097</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-2a5d8e4d2ea9fda479d62d51cea93c484da57c4a24a5ceee301192fafd8b77c3</originalsourceid><addsrcrecordid>eNo1jztLA0EURq8vcBPTCzbbWW2cO-8pZYkPCAgasAzXmVkzso-QWQv_vQvG6uNw4MAHcI1sicjc3ftbveRsIqWNY86cwAwll9JZrfAUClTKVlIwdQYLZ-y_0_ocCmYdVsYIfQmznL8YQ6uQF8BeY-qz393mMnfDMO5S_1nmfZv6WObUfbc0pqEvuzhSN4TY5iu4aKjNcXHcOWweVpv6qVq_PD7X9-sqcTRjxUkFG2XgkVwTSBoXNA8K_cTCSysDKeMlcUnKxxgFQ3S8oSbYD2O8mMPNXzZNcrs_pI4OP9vjcfEL-ztI3g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reinsch's smoothing spline simulation metamodels</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Santos, Pedro R ; Santos, Isabel R</creator><creatorcontrib>Santos, Pedro R ; Santos, Isabel R</creatorcontrib><description>Metamodels have been used frequently by the simulation community. However, not much research has been done with nonparametric metamodels compared with parametric metamodels. In this paper, smoothing splines for performing nonparametric metamodeling are presented. The use of smoothing splines on metamodeling fitting may provide functions that better approximate the behavior of the target simulation model, compared with linear and nonlinear regression metamodels. The smoothing splines tolerance parameter can be used to tune the smoothness of the resulting metamodel. A good experimental design is crucial for obtaining a better smoothing spline metamodel fitting, as illustrated in the examples.</description><identifier>ISSN: 0891-7736</identifier><identifier>ISBN: 9781424498666</identifier><identifier>ISBN: 142449866X</identifier><identifier>EISSN: 1558-4305</identifier><identifier>EISBN: 1424498651</identifier><identifier>EISBN: 1424498643</identifier><identifier>EISBN: 9781424498642</identifier><identifier>EISBN: 9781424498659</identifier><identifier>DOI: 10.1109/WSC.2010.5679097</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data models ; Least squares approximation ; Mathematical model ; Polynomials ; Smoothing methods ; Spline</subject><ispartof>Proceedings of the 2010 Winter Simulation Conference, 2010, p.925-934</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5679097$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5679097$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Santos, Pedro R</creatorcontrib><creatorcontrib>Santos, Isabel R</creatorcontrib><title>Reinsch's smoothing spline simulation metamodels</title><title>Proceedings of the 2010 Winter Simulation Conference</title><addtitle>WSC</addtitle><description>Metamodels have been used frequently by the simulation community. However, not much research has been done with nonparametric metamodels compared with parametric metamodels. In this paper, smoothing splines for performing nonparametric metamodeling are presented. The use of smoothing splines on metamodeling fitting may provide functions that better approximate the behavior of the target simulation model, compared with linear and nonlinear regression metamodels. The smoothing splines tolerance parameter can be used to tune the smoothness of the resulting metamodel. A good experimental design is crucial for obtaining a better smoothing spline metamodel fitting, as illustrated in the examples.</description><subject>Data models</subject><subject>Least squares approximation</subject><subject>Mathematical model</subject><subject>Polynomials</subject><subject>Smoothing methods</subject><subject>Spline</subject><issn>0891-7736</issn><issn>1558-4305</issn><isbn>9781424498666</isbn><isbn>142449866X</isbn><isbn>1424498651</isbn><isbn>1424498643</isbn><isbn>9781424498642</isbn><isbn>9781424498659</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1jztLA0EURq8vcBPTCzbbWW2cO-8pZYkPCAgasAzXmVkzso-QWQv_vQvG6uNw4MAHcI1sicjc3ftbveRsIqWNY86cwAwll9JZrfAUClTKVlIwdQYLZ-y_0_ocCmYdVsYIfQmznL8YQ6uQF8BeY-qz393mMnfDMO5S_1nmfZv6WObUfbc0pqEvuzhSN4TY5iu4aKjNcXHcOWweVpv6qVq_PD7X9-sqcTRjxUkFG2XgkVwTSBoXNA8K_cTCSysDKeMlcUnKxxgFQ3S8oSbYD2O8mMPNXzZNcrs_pI4OP9vjcfEL-ztI3g</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Santos, Pedro R</creator><creator>Santos, Isabel R</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20100101</creationdate><title>Reinsch's smoothing spline simulation metamodels</title><author>Santos, Pedro R ; Santos, Isabel R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-2a5d8e4d2ea9fda479d62d51cea93c484da57c4a24a5ceee301192fafd8b77c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Data models</topic><topic>Least squares approximation</topic><topic>Mathematical model</topic><topic>Polynomials</topic><topic>Smoothing methods</topic><topic>Spline</topic><toplevel>online_resources</toplevel><creatorcontrib>Santos, Pedro R</creatorcontrib><creatorcontrib>Santos, Isabel R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Santos, Pedro R</au><au>Santos, Isabel R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reinsch's smoothing spline simulation metamodels</atitle><btitle>Proceedings of the 2010 Winter Simulation Conference</btitle><stitle>WSC</stitle><date>2010-01-01</date><risdate>2010</risdate><spage>925</spage><epage>934</epage><pages>925-934</pages><issn>0891-7736</issn><eissn>1558-4305</eissn><isbn>9781424498666</isbn><isbn>142449866X</isbn><eisbn>1424498651</eisbn><eisbn>1424498643</eisbn><eisbn>9781424498642</eisbn><eisbn>9781424498659</eisbn><abstract>Metamodels have been used frequently by the simulation community. However, not much research has been done with nonparametric metamodels compared with parametric metamodels. In this paper, smoothing splines for performing nonparametric metamodeling are presented. The use of smoothing splines on metamodeling fitting may provide functions that better approximate the behavior of the target simulation model, compared with linear and nonlinear regression metamodels. The smoothing splines tolerance parameter can be used to tune the smoothness of the resulting metamodel. A good experimental design is crucial for obtaining a better smoothing spline metamodel fitting, as illustrated in the examples.</abstract><pub>IEEE</pub><doi>10.1109/WSC.2010.5679097</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0891-7736
ispartof Proceedings of the 2010 Winter Simulation Conference, 2010, p.925-934
issn 0891-7736
1558-4305
language eng
recordid cdi_ieee_primary_5679097
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data models
Least squares approximation
Mathematical model
Polynomials
Smoothing methods
Spline
title Reinsch's smoothing spline simulation metamodels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reinsch's%20smoothing%20spline%20simulation%20metamodels&rft.btitle=Proceedings%20of%20the%202010%20Winter%20Simulation%20Conference&rft.au=Santos,%20Pedro%20R&rft.date=2010-01-01&rft.spage=925&rft.epage=934&rft.pages=925-934&rft.issn=0891-7736&rft.eissn=1558-4305&rft.isbn=9781424498666&rft.isbn_list=142449866X&rft_id=info:doi/10.1109/WSC.2010.5679097&rft_dat=%3Cieee_6IE%3E5679097%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424498651&rft.eisbn_list=1424498643&rft.eisbn_list=9781424498642&rft.eisbn_list=9781424498659&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5679097&rfr_iscdi=true