Reflected variance estimators for simulation

We study reflected standardized time series (STS) estimators for the asymptotic variance parameter of a stationary stochastic process. These estimators are based on the concept of data re-use and allow us to obtain more information about the process with no additional sampling effort. Reflected STS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Meterelliyoz, M, Alexopoulos, C, Goldsman, D
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1282
container_issue
container_start_page 1275
container_title
container_volume
creator Meterelliyoz, M
Alexopoulos, C
Goldsman, D
description We study reflected standardized time series (STS) estimators for the asymptotic variance parameter of a stationary stochastic process. These estimators are based on the concept of data re-use and allow us to obtain more information about the process with no additional sampling effort. Reflected STS estimators are computed from "reflections" of the original sample path. We show that it is possible to construct linear combinations of reflected estimators with smaller variance than the variance of each constituent estimator, often at no cost in bias. We provide Monte Carlo examples to show that the estimators perform as well in practice as advertised by the theory.
doi_str_mv 10.1109/WSC.2010.5679063
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5679063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5679063</ieee_id><sourcerecordid>5679063</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-d63bd01dd7afca7358d9cbb41fc3427a151937364c5a173707d306ea83936e293</originalsourceid><addsrcrecordid>eNo1j0tLw0AUha8vMK3dC27yA0ydO3eeSwnVFgqCD1yWycwERtJGMlHw3xuwrg6HAx_fAbhGtkRk9u79pV5yNjWptGWKTmCGggthjZJ4CgVKaSpBTJ7Bwmrzvyl1DgUzFiutSV3CLOcPxtBI5AXcPse2i36Mofx2Q3IHH8uYx7R3Yz_ksu2HMqf9V-fG1B-u4KJ1XY6LY87h7WH1Wq-r7dPjpr7fVomjHqugqAkMQ9Cu9U6TNMH6phHYehJcO5RoaVIRXjrUpJkOxFR0hiypyC3N4eaPm2KMu89hshl-dsfX9AuX1UXx</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reflected variance estimators for simulation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Meterelliyoz, M ; Alexopoulos, C ; Goldsman, D</creator><creatorcontrib>Meterelliyoz, M ; Alexopoulos, C ; Goldsman, D</creatorcontrib><description>We study reflected standardized time series (STS) estimators for the asymptotic variance parameter of a stationary stochastic process. These estimators are based on the concept of data re-use and allow us to obtain more information about the process with no additional sampling effort. Reflected STS estimators are computed from "reflections" of the original sample path. We show that it is possible to construct linear combinations of reflected estimators with smaller variance than the variance of each constituent estimator, often at no cost in bias. We provide Monte Carlo examples to show that the estimators perform as well in practice as advertised by the theory.</description><identifier>ISSN: 0891-7736</identifier><identifier>ISBN: 9781424498666</identifier><identifier>ISBN: 142449866X</identifier><identifier>EISSN: 1558-4305</identifier><identifier>EISBN: 1424498651</identifier><identifier>EISBN: 1424498643</identifier><identifier>EISBN: 9781424498642</identifier><identifier>EISBN: 9781424498659</identifier><identifier>DOI: 10.1109/WSC.2010.5679063</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bridges ; Convergence ; Equations ; Limiting ; Modeling ; Random variables ; Time series analysis</subject><ispartof>Proceedings of the 2010 Winter Simulation Conference, 2010, p.1275-1282</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5679063$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5679063$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Meterelliyoz, M</creatorcontrib><creatorcontrib>Alexopoulos, C</creatorcontrib><creatorcontrib>Goldsman, D</creatorcontrib><title>Reflected variance estimators for simulation</title><title>Proceedings of the 2010 Winter Simulation Conference</title><addtitle>WSC</addtitle><description>We study reflected standardized time series (STS) estimators for the asymptotic variance parameter of a stationary stochastic process. These estimators are based on the concept of data re-use and allow us to obtain more information about the process with no additional sampling effort. Reflected STS estimators are computed from "reflections" of the original sample path. We show that it is possible to construct linear combinations of reflected estimators with smaller variance than the variance of each constituent estimator, often at no cost in bias. We provide Monte Carlo examples to show that the estimators perform as well in practice as advertised by the theory.</description><subject>Bridges</subject><subject>Convergence</subject><subject>Equations</subject><subject>Limiting</subject><subject>Modeling</subject><subject>Random variables</subject><subject>Time series analysis</subject><issn>0891-7736</issn><issn>1558-4305</issn><isbn>9781424498666</isbn><isbn>142449866X</isbn><isbn>1424498651</isbn><isbn>1424498643</isbn><isbn>9781424498642</isbn><isbn>9781424498659</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j0tLw0AUha8vMK3dC27yA0ydO3eeSwnVFgqCD1yWycwERtJGMlHw3xuwrg6HAx_fAbhGtkRk9u79pV5yNjWptGWKTmCGggthjZJ4CgVKaSpBTJ7Bwmrzvyl1DgUzFiutSV3CLOcPxtBI5AXcPse2i36Mofx2Q3IHH8uYx7R3Yz_ksu2HMqf9V-fG1B-u4KJ1XY6LY87h7WH1Wq-r7dPjpr7fVomjHqugqAkMQ9Cu9U6TNMH6phHYehJcO5RoaVIRXjrUpJkOxFR0hiypyC3N4eaPm2KMu89hshl-dsfX9AuX1UXx</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Meterelliyoz, M</creator><creator>Alexopoulos, C</creator><creator>Goldsman, D</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20100101</creationdate><title>Reflected variance estimators for simulation</title><author>Meterelliyoz, M ; Alexopoulos, C ; Goldsman, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-d63bd01dd7afca7358d9cbb41fc3427a151937364c5a173707d306ea83936e293</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bridges</topic><topic>Convergence</topic><topic>Equations</topic><topic>Limiting</topic><topic>Modeling</topic><topic>Random variables</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Meterelliyoz, M</creatorcontrib><creatorcontrib>Alexopoulos, C</creatorcontrib><creatorcontrib>Goldsman, D</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Meterelliyoz, M</au><au>Alexopoulos, C</au><au>Goldsman, D</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reflected variance estimators for simulation</atitle><btitle>Proceedings of the 2010 Winter Simulation Conference</btitle><stitle>WSC</stitle><date>2010-01-01</date><risdate>2010</risdate><spage>1275</spage><epage>1282</epage><pages>1275-1282</pages><issn>0891-7736</issn><eissn>1558-4305</eissn><isbn>9781424498666</isbn><isbn>142449866X</isbn><eisbn>1424498651</eisbn><eisbn>1424498643</eisbn><eisbn>9781424498642</eisbn><eisbn>9781424498659</eisbn><abstract>We study reflected standardized time series (STS) estimators for the asymptotic variance parameter of a stationary stochastic process. These estimators are based on the concept of data re-use and allow us to obtain more information about the process with no additional sampling effort. Reflected STS estimators are computed from "reflections" of the original sample path. We show that it is possible to construct linear combinations of reflected estimators with smaller variance than the variance of each constituent estimator, often at no cost in bias. We provide Monte Carlo examples to show that the estimators perform as well in practice as advertised by the theory.</abstract><pub>IEEE</pub><doi>10.1109/WSC.2010.5679063</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0891-7736
ispartof Proceedings of the 2010 Winter Simulation Conference, 2010, p.1275-1282
issn 0891-7736
1558-4305
language eng
recordid cdi_ieee_primary_5679063
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bridges
Convergence
Equations
Limiting
Modeling
Random variables
Time series analysis
title Reflected variance estimators for simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A33%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reflected%20variance%20estimators%20for%20simulation&rft.btitle=Proceedings%20of%20the%202010%20Winter%20Simulation%20Conference&rft.au=Meterelliyoz,%20M&rft.date=2010-01-01&rft.spage=1275&rft.epage=1282&rft.pages=1275-1282&rft.issn=0891-7736&rft.eissn=1558-4305&rft.isbn=9781424498666&rft.isbn_list=142449866X&rft_id=info:doi/10.1109/WSC.2010.5679063&rft_dat=%3Cieee_6IE%3E5679063%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424498651&rft.eisbn_list=1424498643&rft.eisbn_list=9781424498642&rft.eisbn_list=9781424498659&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5679063&rfr_iscdi=true