Reflected variance estimators for simulation
We study reflected standardized time series (STS) estimators for the asymptotic variance parameter of a stationary stochastic process. These estimators are based on the concept of data re-use and allow us to obtain more information about the process with no additional sampling effort. Reflected STS...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1282 |
---|---|
container_issue | |
container_start_page | 1275 |
container_title | |
container_volume | |
creator | Meterelliyoz, M Alexopoulos, C Goldsman, D |
description | We study reflected standardized time series (STS) estimators for the asymptotic variance parameter of a stationary stochastic process. These estimators are based on the concept of data re-use and allow us to obtain more information about the process with no additional sampling effort. Reflected STS estimators are computed from "reflections" of the original sample path. We show that it is possible to construct linear combinations of reflected estimators with smaller variance than the variance of each constituent estimator, often at no cost in bias. We provide Monte Carlo examples to show that the estimators perform as well in practice as advertised by the theory. |
doi_str_mv | 10.1109/WSC.2010.5679063 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5679063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5679063</ieee_id><sourcerecordid>5679063</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-d63bd01dd7afca7358d9cbb41fc3427a151937364c5a173707d306ea83936e293</originalsourceid><addsrcrecordid>eNo1j0tLw0AUha8vMK3dC27yA0ydO3eeSwnVFgqCD1yWycwERtJGMlHw3xuwrg6HAx_fAbhGtkRk9u79pV5yNjWptGWKTmCGggthjZJ4CgVKaSpBTJ7Bwmrzvyl1DgUzFiutSV3CLOcPxtBI5AXcPse2i36Mofx2Q3IHH8uYx7R3Yz_ksu2HMqf9V-fG1B-u4KJ1XY6LY87h7WH1Wq-r7dPjpr7fVomjHqugqAkMQ9Cu9U6TNMH6phHYehJcO5RoaVIRXjrUpJkOxFR0hiypyC3N4eaPm2KMu89hshl-dsfX9AuX1UXx</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reflected variance estimators for simulation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Meterelliyoz, M ; Alexopoulos, C ; Goldsman, D</creator><creatorcontrib>Meterelliyoz, M ; Alexopoulos, C ; Goldsman, D</creatorcontrib><description>We study reflected standardized time series (STS) estimators for the asymptotic variance parameter of a stationary stochastic process. These estimators are based on the concept of data re-use and allow us to obtain more information about the process with no additional sampling effort. Reflected STS estimators are computed from "reflections" of the original sample path. We show that it is possible to construct linear combinations of reflected estimators with smaller variance than the variance of each constituent estimator, often at no cost in bias. We provide Monte Carlo examples to show that the estimators perform as well in practice as advertised by the theory.</description><identifier>ISSN: 0891-7736</identifier><identifier>ISBN: 9781424498666</identifier><identifier>ISBN: 142449866X</identifier><identifier>EISSN: 1558-4305</identifier><identifier>EISBN: 1424498651</identifier><identifier>EISBN: 1424498643</identifier><identifier>EISBN: 9781424498642</identifier><identifier>EISBN: 9781424498659</identifier><identifier>DOI: 10.1109/WSC.2010.5679063</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bridges ; Convergence ; Equations ; Limiting ; Modeling ; Random variables ; Time series analysis</subject><ispartof>Proceedings of the 2010 Winter Simulation Conference, 2010, p.1275-1282</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5679063$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5679063$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Meterelliyoz, M</creatorcontrib><creatorcontrib>Alexopoulos, C</creatorcontrib><creatorcontrib>Goldsman, D</creatorcontrib><title>Reflected variance estimators for simulation</title><title>Proceedings of the 2010 Winter Simulation Conference</title><addtitle>WSC</addtitle><description>We study reflected standardized time series (STS) estimators for the asymptotic variance parameter of a stationary stochastic process. These estimators are based on the concept of data re-use and allow us to obtain more information about the process with no additional sampling effort. Reflected STS estimators are computed from "reflections" of the original sample path. We show that it is possible to construct linear combinations of reflected estimators with smaller variance than the variance of each constituent estimator, often at no cost in bias. We provide Monte Carlo examples to show that the estimators perform as well in practice as advertised by the theory.</description><subject>Bridges</subject><subject>Convergence</subject><subject>Equations</subject><subject>Limiting</subject><subject>Modeling</subject><subject>Random variables</subject><subject>Time series analysis</subject><issn>0891-7736</issn><issn>1558-4305</issn><isbn>9781424498666</isbn><isbn>142449866X</isbn><isbn>1424498651</isbn><isbn>1424498643</isbn><isbn>9781424498642</isbn><isbn>9781424498659</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j0tLw0AUha8vMK3dC27yA0ydO3eeSwnVFgqCD1yWycwERtJGMlHw3xuwrg6HAx_fAbhGtkRk9u79pV5yNjWptGWKTmCGggthjZJ4CgVKaSpBTJ7Bwmrzvyl1DgUzFiutSV3CLOcPxtBI5AXcPse2i36Mofx2Q3IHH8uYx7R3Yz_ksu2HMqf9V-fG1B-u4KJ1XY6LY87h7WH1Wq-r7dPjpr7fVomjHqugqAkMQ9Cu9U6TNMH6phHYehJcO5RoaVIRXjrUpJkOxFR0hiypyC3N4eaPm2KMu89hshl-dsfX9AuX1UXx</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Meterelliyoz, M</creator><creator>Alexopoulos, C</creator><creator>Goldsman, D</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20100101</creationdate><title>Reflected variance estimators for simulation</title><author>Meterelliyoz, M ; Alexopoulos, C ; Goldsman, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-d63bd01dd7afca7358d9cbb41fc3427a151937364c5a173707d306ea83936e293</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bridges</topic><topic>Convergence</topic><topic>Equations</topic><topic>Limiting</topic><topic>Modeling</topic><topic>Random variables</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Meterelliyoz, M</creatorcontrib><creatorcontrib>Alexopoulos, C</creatorcontrib><creatorcontrib>Goldsman, D</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Meterelliyoz, M</au><au>Alexopoulos, C</au><au>Goldsman, D</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reflected variance estimators for simulation</atitle><btitle>Proceedings of the 2010 Winter Simulation Conference</btitle><stitle>WSC</stitle><date>2010-01-01</date><risdate>2010</risdate><spage>1275</spage><epage>1282</epage><pages>1275-1282</pages><issn>0891-7736</issn><eissn>1558-4305</eissn><isbn>9781424498666</isbn><isbn>142449866X</isbn><eisbn>1424498651</eisbn><eisbn>1424498643</eisbn><eisbn>9781424498642</eisbn><eisbn>9781424498659</eisbn><abstract>We study reflected standardized time series (STS) estimators for the asymptotic variance parameter of a stationary stochastic process. These estimators are based on the concept of data re-use and allow us to obtain more information about the process with no additional sampling effort. Reflected STS estimators are computed from "reflections" of the original sample path. We show that it is possible to construct linear combinations of reflected estimators with smaller variance than the variance of each constituent estimator, often at no cost in bias. We provide Monte Carlo examples to show that the estimators perform as well in practice as advertised by the theory.</abstract><pub>IEEE</pub><doi>10.1109/WSC.2010.5679063</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0891-7736 |
ispartof | Proceedings of the 2010 Winter Simulation Conference, 2010, p.1275-1282 |
issn | 0891-7736 1558-4305 |
language | eng |
recordid | cdi_ieee_primary_5679063 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bridges Convergence Equations Limiting Modeling Random variables Time series analysis |
title | Reflected variance estimators for simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A33%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reflected%20variance%20estimators%20for%20simulation&rft.btitle=Proceedings%20of%20the%202010%20Winter%20Simulation%20Conference&rft.au=Meterelliyoz,%20M&rft.date=2010-01-01&rft.spage=1275&rft.epage=1282&rft.pages=1275-1282&rft.issn=0891-7736&rft.eissn=1558-4305&rft.isbn=9781424498666&rft.isbn_list=142449866X&rft_id=info:doi/10.1109/WSC.2010.5679063&rft_dat=%3Cieee_6IE%3E5679063%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424498651&rft.eisbn_list=1424498643&rft.eisbn_list=9781424498642&rft.eisbn_list=9781424498659&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5679063&rfr_iscdi=true |