Effective real-time allocation of pandemic interventions

We address the integration of computational laboratories, spatial agent-based simulation, and real time situation updates to provide pandemic risk assessments and optimal intervention and prevention strategies. Our goal is to support decisions that save lives by helping to integrate real-time feedba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Dibble, Catherine
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2220
container_issue
container_start_page 2211
container_title
container_volume
creator Dibble, Catherine
description We address the integration of computational laboratories, spatial agent-based simulation, and real time situation updates to provide pandemic risk assessments and optimal intervention and prevention strategies. Our goal is to support decisions that save lives by helping to integrate real-time feedback and coordinate effective responses. Computational laboratories using super computing resources allow us to explore and optimize deployments of scarce resources and disruptive interventions for controlling pandemic influenza. We have developed an agent based model for simulating the diffusion of pandemic influenza via carefully calibrated inter-city airline travel. This and related simulation models at community scales can be used to learn vital lessons based on CPU-intensive virtual experience from millions of simulated pandemics. Real-time situation updates can greatly enhance the strategic usefulness of simulation models by providing accurate interim conditions for adapting effective deployments of interventions as a pandemic unfolds.
doi_str_mv 10.1109/WSC.2010.5678919
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5678919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5678919</ieee_id><sourcerecordid>5678919</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-60b4c7dda4a927e5d47ec69f252178d07e9a284d306efafbc93fca363dcae4b93</originalsourceid><addsrcrecordid>eNo1kMlKA0EURcsJ7MTsBTf9A5XUPCyliQMEXERxGV5XvYKSHkJ3E_DvbTGuLpfDuYtLyD1na86Z33zuq7Vgc9PGOs_9BVlwJZTyzmh-SQqutaNKMn1FVt66f2bMNSnYLFBrpbkli3H8Yow7zUVB3DYlDFM-YTkgNHTKLZbQNH2AKfdd2afyCF3ENocydxMOJ-x-wXhHbhI0I67OuSQfT9v36oXu3p5fq8cdzYLbiRpWq2BjBAVeWNRRWQzGJ6Fn7CKz6EE4FSUzmCDVwcsUQBoZA6CqvVySh7_djIiH45BbGL4P5wfkD7_tS8Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Effective real-time allocation of pandemic interventions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dibble, Catherine</creator><creatorcontrib>Dibble, Catherine</creatorcontrib><description>We address the integration of computational laboratories, spatial agent-based simulation, and real time situation updates to provide pandemic risk assessments and optimal intervention and prevention strategies. Our goal is to support decisions that save lives by helping to integrate real-time feedback and coordinate effective responses. Computational laboratories using super computing resources allow us to explore and optimize deployments of scarce resources and disruptive interventions for controlling pandemic influenza. We have developed an agent based model for simulating the diffusion of pandemic influenza via carefully calibrated inter-city airline travel. This and related simulation models at community scales can be used to learn vital lessons based on CPU-intensive virtual experience from millions of simulated pandemics. Real-time situation updates can greatly enhance the strategic usefulness of simulation models by providing accurate interim conditions for adapting effective deployments of interventions as a pandemic unfolds.</description><identifier>ISSN: 0891-7736</identifier><identifier>ISBN: 9781424498666</identifier><identifier>ISBN: 142449866X</identifier><identifier>EISSN: 1558-4305</identifier><identifier>EISBN: 1424498651</identifier><identifier>EISBN: 1424498643</identifier><identifier>EISBN: 9781424498642</identifier><identifier>EISBN: 9781424498659</identifier><identifier>DOI: 10.1109/WSC.2010.5678919</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Atmospheric modeling ; Biological system modeling ; Cities and towns ; Computational modeling ; Influenza ; Mathematical model</subject><ispartof>Proceedings of the 2010 Winter Simulation Conference, 2010, p.2211-2220</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5678919$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5678919$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dibble, Catherine</creatorcontrib><title>Effective real-time allocation of pandemic interventions</title><title>Proceedings of the 2010 Winter Simulation Conference</title><addtitle>WSC</addtitle><description>We address the integration of computational laboratories, spatial agent-based simulation, and real time situation updates to provide pandemic risk assessments and optimal intervention and prevention strategies. Our goal is to support decisions that save lives by helping to integrate real-time feedback and coordinate effective responses. Computational laboratories using super computing resources allow us to explore and optimize deployments of scarce resources and disruptive interventions for controlling pandemic influenza. We have developed an agent based model for simulating the diffusion of pandemic influenza via carefully calibrated inter-city airline travel. This and related simulation models at community scales can be used to learn vital lessons based on CPU-intensive virtual experience from millions of simulated pandemics. Real-time situation updates can greatly enhance the strategic usefulness of simulation models by providing accurate interim conditions for adapting effective deployments of interventions as a pandemic unfolds.</description><subject>Analytical models</subject><subject>Atmospheric modeling</subject><subject>Biological system modeling</subject><subject>Cities and towns</subject><subject>Computational modeling</subject><subject>Influenza</subject><subject>Mathematical model</subject><issn>0891-7736</issn><issn>1558-4305</issn><isbn>9781424498666</isbn><isbn>142449866X</isbn><isbn>1424498651</isbn><isbn>1424498643</isbn><isbn>9781424498642</isbn><isbn>9781424498659</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMlKA0EURcsJ7MTsBTf9A5XUPCyliQMEXERxGV5XvYKSHkJ3E_DvbTGuLpfDuYtLyD1na86Z33zuq7Vgc9PGOs_9BVlwJZTyzmh-SQqutaNKMn1FVt66f2bMNSnYLFBrpbkli3H8Yow7zUVB3DYlDFM-YTkgNHTKLZbQNH2AKfdd2afyCF3ENocydxMOJ-x-wXhHbhI0I67OuSQfT9v36oXu3p5fq8cdzYLbiRpWq2BjBAVeWNRRWQzGJ6Fn7CKz6EE4FSUzmCDVwcsUQBoZA6CqvVySh7_djIiH45BbGL4P5wfkD7_tS8Q</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Dibble, Catherine</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20100101</creationdate><title>Effective real-time allocation of pandemic interventions</title><author>Dibble, Catherine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-60b4c7dda4a927e5d47ec69f252178d07e9a284d306efafbc93fca363dcae4b93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical models</topic><topic>Atmospheric modeling</topic><topic>Biological system modeling</topic><topic>Cities and towns</topic><topic>Computational modeling</topic><topic>Influenza</topic><topic>Mathematical model</topic><toplevel>online_resources</toplevel><creatorcontrib>Dibble, Catherine</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dibble, Catherine</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Effective real-time allocation of pandemic interventions</atitle><btitle>Proceedings of the 2010 Winter Simulation Conference</btitle><stitle>WSC</stitle><date>2010-01-01</date><risdate>2010</risdate><spage>2211</spage><epage>2220</epage><pages>2211-2220</pages><issn>0891-7736</issn><eissn>1558-4305</eissn><isbn>9781424498666</isbn><isbn>142449866X</isbn><eisbn>1424498651</eisbn><eisbn>1424498643</eisbn><eisbn>9781424498642</eisbn><eisbn>9781424498659</eisbn><abstract>We address the integration of computational laboratories, spatial agent-based simulation, and real time situation updates to provide pandemic risk assessments and optimal intervention and prevention strategies. Our goal is to support decisions that save lives by helping to integrate real-time feedback and coordinate effective responses. Computational laboratories using super computing resources allow us to explore and optimize deployments of scarce resources and disruptive interventions for controlling pandemic influenza. We have developed an agent based model for simulating the diffusion of pandemic influenza via carefully calibrated inter-city airline travel. This and related simulation models at community scales can be used to learn vital lessons based on CPU-intensive virtual experience from millions of simulated pandemics. Real-time situation updates can greatly enhance the strategic usefulness of simulation models by providing accurate interim conditions for adapting effective deployments of interventions as a pandemic unfolds.</abstract><pub>IEEE</pub><doi>10.1109/WSC.2010.5678919</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0891-7736
ispartof Proceedings of the 2010 Winter Simulation Conference, 2010, p.2211-2220
issn 0891-7736
1558-4305
language eng
recordid cdi_ieee_primary_5678919
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Analytical models
Atmospheric modeling
Biological system modeling
Cities and towns
Computational modeling
Influenza
Mathematical model
title Effective real-time allocation of pandemic interventions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Effective%20real-time%20allocation%20of%20pandemic%20interventions&rft.btitle=Proceedings%20of%20the%202010%20Winter%20Simulation%20Conference&rft.au=Dibble,%20Catherine&rft.date=2010-01-01&rft.spage=2211&rft.epage=2220&rft.pages=2211-2220&rft.issn=0891-7736&rft.eissn=1558-4305&rft.isbn=9781424498666&rft.isbn_list=142449866X&rft_id=info:doi/10.1109/WSC.2010.5678919&rft_dat=%3Cieee_6IE%3E5678919%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424498651&rft.eisbn_list=1424498643&rft.eisbn_list=9781424498642&rft.eisbn_list=9781424498659&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5678919&rfr_iscdi=true