Effective real-time allocation of pandemic interventions
We address the integration of computational laboratories, spatial agent-based simulation, and real time situation updates to provide pandemic risk assessments and optimal intervention and prevention strategies. Our goal is to support decisions that save lives by helping to integrate real-time feedba...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2220 |
---|---|
container_issue | |
container_start_page | 2211 |
container_title | |
container_volume | |
creator | Dibble, Catherine |
description | We address the integration of computational laboratories, spatial agent-based simulation, and real time situation updates to provide pandemic risk assessments and optimal intervention and prevention strategies. Our goal is to support decisions that save lives by helping to integrate real-time feedback and coordinate effective responses. Computational laboratories using super computing resources allow us to explore and optimize deployments of scarce resources and disruptive interventions for controlling pandemic influenza. We have developed an agent based model for simulating the diffusion of pandemic influenza via carefully calibrated inter-city airline travel. This and related simulation models at community scales can be used to learn vital lessons based on CPU-intensive virtual experience from millions of simulated pandemics. Real-time situation updates can greatly enhance the strategic usefulness of simulation models by providing accurate interim conditions for adapting effective deployments of interventions as a pandemic unfolds. |
doi_str_mv | 10.1109/WSC.2010.5678919 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5678919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5678919</ieee_id><sourcerecordid>5678919</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-60b4c7dda4a927e5d47ec69f252178d07e9a284d306efafbc93fca363dcae4b93</originalsourceid><addsrcrecordid>eNo1kMlKA0EURcsJ7MTsBTf9A5XUPCyliQMEXERxGV5XvYKSHkJ3E_DvbTGuLpfDuYtLyD1na86Z33zuq7Vgc9PGOs_9BVlwJZTyzmh-SQqutaNKMn1FVt66f2bMNSnYLFBrpbkli3H8Yow7zUVB3DYlDFM-YTkgNHTKLZbQNH2AKfdd2afyCF3ENocydxMOJ-x-wXhHbhI0I67OuSQfT9v36oXu3p5fq8cdzYLbiRpWq2BjBAVeWNRRWQzGJ6Fn7CKz6EE4FSUzmCDVwcsUQBoZA6CqvVySh7_djIiH45BbGL4P5wfkD7_tS8Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Effective real-time allocation of pandemic interventions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dibble, Catherine</creator><creatorcontrib>Dibble, Catherine</creatorcontrib><description>We address the integration of computational laboratories, spatial agent-based simulation, and real time situation updates to provide pandemic risk assessments and optimal intervention and prevention strategies. Our goal is to support decisions that save lives by helping to integrate real-time feedback and coordinate effective responses. Computational laboratories using super computing resources allow us to explore and optimize deployments of scarce resources and disruptive interventions for controlling pandemic influenza. We have developed an agent based model for simulating the diffusion of pandemic influenza via carefully calibrated inter-city airline travel. This and related simulation models at community scales can be used to learn vital lessons based on CPU-intensive virtual experience from millions of simulated pandemics. Real-time situation updates can greatly enhance the strategic usefulness of simulation models by providing accurate interim conditions for adapting effective deployments of interventions as a pandemic unfolds.</description><identifier>ISSN: 0891-7736</identifier><identifier>ISBN: 9781424498666</identifier><identifier>ISBN: 142449866X</identifier><identifier>EISSN: 1558-4305</identifier><identifier>EISBN: 1424498651</identifier><identifier>EISBN: 1424498643</identifier><identifier>EISBN: 9781424498642</identifier><identifier>EISBN: 9781424498659</identifier><identifier>DOI: 10.1109/WSC.2010.5678919</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Atmospheric modeling ; Biological system modeling ; Cities and towns ; Computational modeling ; Influenza ; Mathematical model</subject><ispartof>Proceedings of the 2010 Winter Simulation Conference, 2010, p.2211-2220</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5678919$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5678919$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dibble, Catherine</creatorcontrib><title>Effective real-time allocation of pandemic interventions</title><title>Proceedings of the 2010 Winter Simulation Conference</title><addtitle>WSC</addtitle><description>We address the integration of computational laboratories, spatial agent-based simulation, and real time situation updates to provide pandemic risk assessments and optimal intervention and prevention strategies. Our goal is to support decisions that save lives by helping to integrate real-time feedback and coordinate effective responses. Computational laboratories using super computing resources allow us to explore and optimize deployments of scarce resources and disruptive interventions for controlling pandemic influenza. We have developed an agent based model for simulating the diffusion of pandemic influenza via carefully calibrated inter-city airline travel. This and related simulation models at community scales can be used to learn vital lessons based on CPU-intensive virtual experience from millions of simulated pandemics. Real-time situation updates can greatly enhance the strategic usefulness of simulation models by providing accurate interim conditions for adapting effective deployments of interventions as a pandemic unfolds.</description><subject>Analytical models</subject><subject>Atmospheric modeling</subject><subject>Biological system modeling</subject><subject>Cities and towns</subject><subject>Computational modeling</subject><subject>Influenza</subject><subject>Mathematical model</subject><issn>0891-7736</issn><issn>1558-4305</issn><isbn>9781424498666</isbn><isbn>142449866X</isbn><isbn>1424498651</isbn><isbn>1424498643</isbn><isbn>9781424498642</isbn><isbn>9781424498659</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMlKA0EURcsJ7MTsBTf9A5XUPCyliQMEXERxGV5XvYKSHkJ3E_DvbTGuLpfDuYtLyD1na86Z33zuq7Vgc9PGOs_9BVlwJZTyzmh-SQqutaNKMn1FVt66f2bMNSnYLFBrpbkli3H8Yow7zUVB3DYlDFM-YTkgNHTKLZbQNH2AKfdd2afyCF3ENocydxMOJ-x-wXhHbhI0I67OuSQfT9v36oXu3p5fq8cdzYLbiRpWq2BjBAVeWNRRWQzGJ6Fn7CKz6EE4FSUzmCDVwcsUQBoZA6CqvVySh7_djIiH45BbGL4P5wfkD7_tS8Q</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Dibble, Catherine</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20100101</creationdate><title>Effective real-time allocation of pandemic interventions</title><author>Dibble, Catherine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-60b4c7dda4a927e5d47ec69f252178d07e9a284d306efafbc93fca363dcae4b93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical models</topic><topic>Atmospheric modeling</topic><topic>Biological system modeling</topic><topic>Cities and towns</topic><topic>Computational modeling</topic><topic>Influenza</topic><topic>Mathematical model</topic><toplevel>online_resources</toplevel><creatorcontrib>Dibble, Catherine</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dibble, Catherine</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Effective real-time allocation of pandemic interventions</atitle><btitle>Proceedings of the 2010 Winter Simulation Conference</btitle><stitle>WSC</stitle><date>2010-01-01</date><risdate>2010</risdate><spage>2211</spage><epage>2220</epage><pages>2211-2220</pages><issn>0891-7736</issn><eissn>1558-4305</eissn><isbn>9781424498666</isbn><isbn>142449866X</isbn><eisbn>1424498651</eisbn><eisbn>1424498643</eisbn><eisbn>9781424498642</eisbn><eisbn>9781424498659</eisbn><abstract>We address the integration of computational laboratories, spatial agent-based simulation, and real time situation updates to provide pandemic risk assessments and optimal intervention and prevention strategies. Our goal is to support decisions that save lives by helping to integrate real-time feedback and coordinate effective responses. Computational laboratories using super computing resources allow us to explore and optimize deployments of scarce resources and disruptive interventions for controlling pandemic influenza. We have developed an agent based model for simulating the diffusion of pandemic influenza via carefully calibrated inter-city airline travel. This and related simulation models at community scales can be used to learn vital lessons based on CPU-intensive virtual experience from millions of simulated pandemics. Real-time situation updates can greatly enhance the strategic usefulness of simulation models by providing accurate interim conditions for adapting effective deployments of interventions as a pandemic unfolds.</abstract><pub>IEEE</pub><doi>10.1109/WSC.2010.5678919</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0891-7736 |
ispartof | Proceedings of the 2010 Winter Simulation Conference, 2010, p.2211-2220 |
issn | 0891-7736 1558-4305 |
language | eng |
recordid | cdi_ieee_primary_5678919 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Analytical models Atmospheric modeling Biological system modeling Cities and towns Computational modeling Influenza Mathematical model |
title | Effective real-time allocation of pandemic interventions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Effective%20real-time%20allocation%20of%20pandemic%20interventions&rft.btitle=Proceedings%20of%20the%202010%20Winter%20Simulation%20Conference&rft.au=Dibble,%20Catherine&rft.date=2010-01-01&rft.spage=2211&rft.epage=2220&rft.pages=2211-2220&rft.issn=0891-7736&rft.eissn=1558-4305&rft.isbn=9781424498666&rft.isbn_list=142449866X&rft_id=info:doi/10.1109/WSC.2010.5678919&rft_dat=%3Cieee_6IE%3E5678919%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424498651&rft.eisbn_list=1424498643&rft.eisbn_list=9781424498642&rft.eisbn_list=9781424498659&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5678919&rfr_iscdi=true |