Image Feature Extraction and Recognition of Abstractionism and Realism Style of Indonesian Paintings

This paper chooses and evaluates three feature vectors and their augmented feature vector for recognizing the styles of Indonesian paintings. The three feature extraction methods include the Gabor wavelet, histogram analysis, and number-of-edge analysis. The recognition purpose is to discriminate be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tieta Antaresti, R P, Arymurthy, A M
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152
container_issue
container_start_page 149
container_title
container_volume
creator Tieta Antaresti, R P
Arymurthy, A M
description This paper chooses and evaluates three feature vectors and their augmented feature vector for recognizing the styles of Indonesian paintings. The three feature extraction methods include the Gabor wavelet, histogram analysis, and number-of-edge analysis. The recognition purpose is to discriminate between the abstractionism and the realism styles of Indonesian paintings. The experimental results using 115 painting images show that the use of number-of-edge features has given the best result with 66.23% accuracy.
doi_str_mv 10.1109/ACT.2010.9
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5675821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5675821</ieee_id><sourcerecordid>5675821</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-77e8402f575d20304e36e6ff2910592ee145a275d33d7e330a83465f7cf1a2d3</originalsourceid><addsrcrecordid>eNo1jE1Lw0AYhFdEUGouXr3kD6S--509ltBqoKDY3suavBtWko1kV7D_3rTWucw8zDCEPFBYUgrmaVXtlwxmMlckM7oErYwUTBm4PjMVTIhSC8VuSRbjJ8ySbGa4I2092A7zDdr0PWG-_kmTbZIfQ25Dm79jM3bBn3l0-eoj_tc-DpeF7U95l449njZ1aMeA0duQv1kfkg9dvCc3zvYRs4svyG6z3lcvxfb1ua5W28IbSIXWWApgTmrZMuAgkCtUzjFDQRqGSIW0bC45bzVyDrbkQkmnG0cta_mCPP69ekQ8fE1-sNPxIJWWJaP8F_suVW8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Image Feature Extraction and Recognition of Abstractionism and Realism Style of Indonesian Paintings</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tieta Antaresti, R P ; Arymurthy, A M</creator><creatorcontrib>Tieta Antaresti, R P ; Arymurthy, A M</creatorcontrib><description>This paper chooses and evaluates three feature vectors and their augmented feature vector for recognizing the styles of Indonesian paintings. The three feature extraction methods include the Gabor wavelet, histogram analysis, and number-of-edge analysis. The recognition purpose is to discriminate between the abstractionism and the realism styles of Indonesian paintings. The experimental results using 115 painting images show that the use of number-of-edge features has given the best result with 66.23% accuracy.</description><identifier>ISBN: 9781424487462</identifier><identifier>ISBN: 1424487463</identifier><identifier>EISBN: 9780769542690</identifier><identifier>EISBN: 0769542697</identifier><identifier>DOI: 10.1109/ACT.2010.9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Canny edge detection ; Feature extraction ; Gabor wavelet ; histogram ; Histograms ; Image edge detection ; Indonesian paintings ; Support vector machine classification ; Testing ; visual arts</subject><ispartof>2010 Second International Conference on Advances in Computing, Control, and Telecommunication Technologies, 2010, p.149-152</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5675821$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27903,54897</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5675821$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tieta Antaresti, R P</creatorcontrib><creatorcontrib>Arymurthy, A M</creatorcontrib><title>Image Feature Extraction and Recognition of Abstractionism and Realism Style of Indonesian Paintings</title><title>2010 Second International Conference on Advances in Computing, Control, and Telecommunication Technologies</title><addtitle>act</addtitle><description>This paper chooses and evaluates three feature vectors and their augmented feature vector for recognizing the styles of Indonesian paintings. The three feature extraction methods include the Gabor wavelet, histogram analysis, and number-of-edge analysis. The recognition purpose is to discriminate between the abstractionism and the realism styles of Indonesian paintings. The experimental results using 115 painting images show that the use of number-of-edge features has given the best result with 66.23% accuracy.</description><subject>Canny edge detection</subject><subject>Feature extraction</subject><subject>Gabor wavelet</subject><subject>histogram</subject><subject>Histograms</subject><subject>Image edge detection</subject><subject>Indonesian paintings</subject><subject>Support vector machine classification</subject><subject>Testing</subject><subject>visual arts</subject><isbn>9781424487462</isbn><isbn>1424487463</isbn><isbn>9780769542690</isbn><isbn>0769542697</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1jE1Lw0AYhFdEUGouXr3kD6S--509ltBqoKDY3suavBtWko1kV7D_3rTWucw8zDCEPFBYUgrmaVXtlwxmMlckM7oErYwUTBm4PjMVTIhSC8VuSRbjJ8ySbGa4I2092A7zDdr0PWG-_kmTbZIfQ25Dm79jM3bBn3l0-eoj_tc-DpeF7U95l449njZ1aMeA0duQv1kfkg9dvCc3zvYRs4svyG6z3lcvxfb1ua5W28IbSIXWWApgTmrZMuAgkCtUzjFDQRqGSIW0bC45bzVyDrbkQkmnG0cta_mCPP69ekQ8fE1-sNPxIJWWJaP8F_suVW8</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Tieta Antaresti, R P</creator><creator>Arymurthy, A M</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201012</creationdate><title>Image Feature Extraction and Recognition of Abstractionism and Realism Style of Indonesian Paintings</title><author>Tieta Antaresti, R P ; Arymurthy, A M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-77e8402f575d20304e36e6ff2910592ee145a275d33d7e330a83465f7cf1a2d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Canny edge detection</topic><topic>Feature extraction</topic><topic>Gabor wavelet</topic><topic>histogram</topic><topic>Histograms</topic><topic>Image edge detection</topic><topic>Indonesian paintings</topic><topic>Support vector machine classification</topic><topic>Testing</topic><topic>visual arts</topic><toplevel>online_resources</toplevel><creatorcontrib>Tieta Antaresti, R P</creatorcontrib><creatorcontrib>Arymurthy, A M</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tieta Antaresti, R P</au><au>Arymurthy, A M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Image Feature Extraction and Recognition of Abstractionism and Realism Style of Indonesian Paintings</atitle><btitle>2010 Second International Conference on Advances in Computing, Control, and Telecommunication Technologies</btitle><stitle>act</stitle><date>2010-12</date><risdate>2010</risdate><spage>149</spage><epage>152</epage><pages>149-152</pages><isbn>9781424487462</isbn><isbn>1424487463</isbn><eisbn>9780769542690</eisbn><eisbn>0769542697</eisbn><abstract>This paper chooses and evaluates three feature vectors and their augmented feature vector for recognizing the styles of Indonesian paintings. The three feature extraction methods include the Gabor wavelet, histogram analysis, and number-of-edge analysis. The recognition purpose is to discriminate between the abstractionism and the realism styles of Indonesian paintings. The experimental results using 115 painting images show that the use of number-of-edge features has given the best result with 66.23% accuracy.</abstract><pub>IEEE</pub><doi>10.1109/ACT.2010.9</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424487462
ispartof 2010 Second International Conference on Advances in Computing, Control, and Telecommunication Technologies, 2010, p.149-152
issn
language eng
recordid cdi_ieee_primary_5675821
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Canny edge detection
Feature extraction
Gabor wavelet
histogram
Histograms
Image edge detection
Indonesian paintings
Support vector machine classification
Testing
visual arts
title Image Feature Extraction and Recognition of Abstractionism and Realism Style of Indonesian Paintings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Image%20Feature%20Extraction%20and%20Recognition%20of%20Abstractionism%20and%20Realism%20Style%20of%20Indonesian%20Paintings&rft.btitle=2010%20Second%20International%20Conference%20on%20Advances%20in%20Computing,%20Control,%20and%20Telecommunication%20Technologies&rft.au=Tieta%20Antaresti,%20R%20P&rft.date=2010-12&rft.spage=149&rft.epage=152&rft.pages=149-152&rft.isbn=9781424487462&rft.isbn_list=1424487463&rft_id=info:doi/10.1109/ACT.2010.9&rft_dat=%3Cieee_6IE%3E5675821%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769542690&rft.eisbn_list=0769542697&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5675821&rfr_iscdi=true