A 3D Chaotic Oscillator's Stability and Chaos Behavior

The main aim of this paper is to analyze a 3D chaotic oscillator's stability and chaos behavior by the theoretical and numerical methods to obtain a sufficient and necessary condition of the 3D chaotic oscillator's stability and a necessary condition to generate chaos. A detail numerical e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhengping Shi, Tong-jun He
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 210
container_issue
container_start_page 207
container_title
container_volume
creator Zhengping Shi
Tong-jun He
description The main aim of this paper is to analyze a 3D chaotic oscillator's stability and chaos behavior by the theoretical and numerical methods to obtain a sufficient and necessary condition of the 3D chaotic oscillator's stability and a necessary condition to generate chaos. A detail numerical example and a circuit experimental simulation verify the correctness of the mentioned two conditions above.
doi_str_mv 10.1109/IWCFTA.2010.87
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5671281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5671281</ieee_id><sourcerecordid>5671281</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f455f5489c6152b8c65b7ddff2872a8d4701fce721288225c25c8558137e31bc3</originalsourceid><addsrcrecordid>eNotTM9LwzAYDchgOnv14iU3T535knzN12OtTgeDHSzsONI0YZFqpSnC_nvrj8eDB-8XYzcg1gCivN8e6k1TraWYDTIXLCsNgZZaEwHigl39JKVCLcySZSm9iRkojS7MJSsqrh55fbLDFB3fJxf73k7DeJf462Tb2MfpzO1H91tJ_MGf7Fccxmu2CLZPPvvXFWs2T039ku_2z9u62uWxFFMeNGJATaUrAGVLrsDWdF0Ikoy01GkjIDhvJEgiKdHNJEQCZbyC1qkVu_27jd774-cY3-14PmJh5gGob6OLQ_w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A 3D Chaotic Oscillator's Stability and Chaos Behavior</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhengping Shi ; Tong-jun He</creator><creatorcontrib>Zhengping Shi ; Tong-jun He</creatorcontrib><description>The main aim of this paper is to analyze a 3D chaotic oscillator's stability and chaos behavior by the theoretical and numerical methods to obtain a sufficient and necessary condition of the 3D chaotic oscillator's stability and a necessary condition to generate chaos. A detail numerical example and a circuit experimental simulation verify the correctness of the mentioned two conditions above.</description><identifier>ISBN: 9781424488155</identifier><identifier>ISBN: 142448815X</identifier><identifier>DOI: 10.1109/IWCFTA.2010.87</identifier><identifier>LCCN: 2010935407</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chaotic communication ; chaotic oscillator ; Circuit stability ; Layapunov exponential ; Numerical models ; Oscillators ; Stability analysis ; stable condition ; Three dimensional displays</subject><ispartof>2010 International Workshop on Chaos-Fractal Theories and Applications, 2010, p.207-210</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5671281$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5671281$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhengping Shi</creatorcontrib><creatorcontrib>Tong-jun He</creatorcontrib><title>A 3D Chaotic Oscillator's Stability and Chaos Behavior</title><title>2010 International Workshop on Chaos-Fractal Theories and Applications</title><addtitle>iwcfta</addtitle><description>The main aim of this paper is to analyze a 3D chaotic oscillator's stability and chaos behavior by the theoretical and numerical methods to obtain a sufficient and necessary condition of the 3D chaotic oscillator's stability and a necessary condition to generate chaos. A detail numerical example and a circuit experimental simulation verify the correctness of the mentioned two conditions above.</description><subject>Chaotic communication</subject><subject>chaotic oscillator</subject><subject>Circuit stability</subject><subject>Layapunov exponential</subject><subject>Numerical models</subject><subject>Oscillators</subject><subject>Stability analysis</subject><subject>stable condition</subject><subject>Three dimensional displays</subject><isbn>9781424488155</isbn><isbn>142448815X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotTM9LwzAYDchgOnv14iU3T535knzN12OtTgeDHSzsONI0YZFqpSnC_nvrj8eDB-8XYzcg1gCivN8e6k1TraWYDTIXLCsNgZZaEwHigl39JKVCLcySZSm9iRkojS7MJSsqrh55fbLDFB3fJxf73k7DeJf462Tb2MfpzO1H91tJ_MGf7Fccxmu2CLZPPvvXFWs2T039ku_2z9u62uWxFFMeNGJATaUrAGVLrsDWdF0Ikoy01GkjIDhvJEgiKdHNJEQCZbyC1qkVu_27jd774-cY3-14PmJh5gGob6OLQ_w</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Zhengping Shi</creator><creator>Tong-jun He</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>A 3D Chaotic Oscillator's Stability and Chaos Behavior</title><author>Zhengping Shi ; Tong-jun He</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f455f5489c6152b8c65b7ddff2872a8d4701fce721288225c25c8558137e31bc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chaotic communication</topic><topic>chaotic oscillator</topic><topic>Circuit stability</topic><topic>Layapunov exponential</topic><topic>Numerical models</topic><topic>Oscillators</topic><topic>Stability analysis</topic><topic>stable condition</topic><topic>Three dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhengping Shi</creatorcontrib><creatorcontrib>Tong-jun He</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhengping Shi</au><au>Tong-jun He</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A 3D Chaotic Oscillator's Stability and Chaos Behavior</atitle><btitle>2010 International Workshop on Chaos-Fractal Theories and Applications</btitle><stitle>iwcfta</stitle><date>2010-10</date><risdate>2010</risdate><spage>207</spage><epage>210</epage><pages>207-210</pages><isbn>9781424488155</isbn><isbn>142448815X</isbn><abstract>The main aim of this paper is to analyze a 3D chaotic oscillator's stability and chaos behavior by the theoretical and numerical methods to obtain a sufficient and necessary condition of the 3D chaotic oscillator's stability and a necessary condition to generate chaos. A detail numerical example and a circuit experimental simulation verify the correctness of the mentioned two conditions above.</abstract><pub>IEEE</pub><doi>10.1109/IWCFTA.2010.87</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424488155
ispartof 2010 International Workshop on Chaos-Fractal Theories and Applications, 2010, p.207-210
issn
language eng
recordid cdi_ieee_primary_5671281
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Chaotic communication
chaotic oscillator
Circuit stability
Layapunov exponential
Numerical models
Oscillators
Stability analysis
stable condition
Three dimensional displays
title A 3D Chaotic Oscillator's Stability and Chaos Behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%203D%20Chaotic%20Oscillator's%20Stability%20and%20Chaos%20Behavior&rft.btitle=2010%20International%20Workshop%20on%20Chaos-Fractal%20Theories%20and%20Applications&rft.au=Zhengping%20Shi&rft.date=2010-10&rft.spage=207&rft.epage=210&rft.pages=207-210&rft.isbn=9781424488155&rft.isbn_list=142448815X&rft_id=info:doi/10.1109/IWCFTA.2010.87&rft_dat=%3Cieee_6IE%3E5671281%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5671281&rfr_iscdi=true