Particle Swarm Optimization aided unscented kalman filter for ballistic target tracking

Tracking of a ballistic target in its reentry phase by considering the radar measurements is a highly complex problem in nonlinear filtering. Kalman Filter (KF) is used to estimate the positions of the target when the measurements are corrupted with noise. If the measurements (range and bearing) are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jatoth, Ravi Kumar, Rao, D Nagarjuna, Kumar, K Sumanth
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 460
container_issue
container_start_page 455
container_title
container_volume
creator Jatoth, Ravi Kumar
Rao, D Nagarjuna
Kumar, K Sumanth
description Tracking of a ballistic target in its reentry phase by considering the radar measurements is a highly complex problem in nonlinear filtering. Kalman Filter (KF) is used to estimate the positions of the target when the measurements are corrupted with noise. If the measurements (range and bearing) are nonlinear then Unscented Kalman filter (UKF) can be used. For obtaining reliable estimate of the target state, filter has to be tuned before the operation, which is offline. Tuning is the process of estimating the process noise covariance matrix (Q) and measurement noise covariance matrix (R) of the filter. This paper presents tuning of UKF using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for ballistic target tracking. Simulations results show that the superiority of PSO tuned UKF over conventional UKF.
doi_str_mv 10.1109/ICCCCT.2010.5670595
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5670595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5670595</ieee_id><sourcerecordid>5670595</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8972b7a3cc3d2d4c735e825bf8d5c2e637394eeeebac03a94c3d9b3b4479f8c13</originalsourceid><addsrcrecordid>eNpVkM1qwzAQhFVKoSX1E-SiF3CqX0s6FtOfQCCFGnoMK1kOamQnyCqlffoKmku-y-wuw8AsQktKVpQS87BuC92KkXKQjSLSyCtUGaWpYEIo1Wh5fbEbdouqef4kBcmUoOQOfbxBysFFj9-_IY14e8phDL-Qw3HCEHrf469pdn7KZTpAHGHCQ4jZJzwcE7YQY5hLAM6Q9j7jnMAdwrS_RzcDxNlXZ12g7vmpa1_rzfZl3T5u6mBIrrVRzCrgzvGe9cIpLr1m0g66l475hituhC9YcISDEcVnLLeljhm0o3yBlv-xoZh2pxRGSD-78zf4H6TvVR8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Particle Swarm Optimization aided unscented kalman filter for ballistic target tracking</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jatoth, Ravi Kumar ; Rao, D Nagarjuna ; Kumar, K Sumanth</creator><creatorcontrib>Jatoth, Ravi Kumar ; Rao, D Nagarjuna ; Kumar, K Sumanth</creatorcontrib><description>Tracking of a ballistic target in its reentry phase by considering the radar measurements is a highly complex problem in nonlinear filtering. Kalman Filter (KF) is used to estimate the positions of the target when the measurements are corrupted with noise. If the measurements (range and bearing) are nonlinear then Unscented Kalman filter (UKF) can be used. For obtaining reliable estimate of the target state, filter has to be tuned before the operation, which is offline. Tuning is the process of estimating the process noise covariance matrix (Q) and measurement noise covariance matrix (R) of the filter. This paper presents tuning of UKF using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for ballistic target tracking. Simulations results show that the superiority of PSO tuned UKF over conventional UKF.</description><identifier>ISBN: 9781424477692</identifier><identifier>ISBN: 1424477697</identifier><identifier>EISBN: 9781424477685</identifier><identifier>EISBN: 1424477700</identifier><identifier>EISBN: 1424477689</identifier><identifier>EISBN: 9781424477708</identifier><identifier>DOI: 10.1109/ICCCCT.2010.5670595</identifier><language>eng</language><publisher>IEEE</publisher><subject>ballistic target tracking ; Covariance matrix ; Gallium ; Genetic Algorithm ; Kalman filters ; Noise ; Particle swarm optimization ; Radar tracking ; Tuning ; Unscented Kalman filter</subject><ispartof>2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES, 2010, p.455-460</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5670595$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5670595$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jatoth, Ravi Kumar</creatorcontrib><creatorcontrib>Rao, D Nagarjuna</creatorcontrib><creatorcontrib>Kumar, K Sumanth</creatorcontrib><title>Particle Swarm Optimization aided unscented kalman filter for ballistic target tracking</title><title>2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES</title><addtitle>ICCCCT</addtitle><description>Tracking of a ballistic target in its reentry phase by considering the radar measurements is a highly complex problem in nonlinear filtering. Kalman Filter (KF) is used to estimate the positions of the target when the measurements are corrupted with noise. If the measurements (range and bearing) are nonlinear then Unscented Kalman filter (UKF) can be used. For obtaining reliable estimate of the target state, filter has to be tuned before the operation, which is offline. Tuning is the process of estimating the process noise covariance matrix (Q) and measurement noise covariance matrix (R) of the filter. This paper presents tuning of UKF using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for ballistic target tracking. Simulations results show that the superiority of PSO tuned UKF over conventional UKF.</description><subject>ballistic target tracking</subject><subject>Covariance matrix</subject><subject>Gallium</subject><subject>Genetic Algorithm</subject><subject>Kalman filters</subject><subject>Noise</subject><subject>Particle swarm optimization</subject><subject>Radar tracking</subject><subject>Tuning</subject><subject>Unscented Kalman filter</subject><isbn>9781424477692</isbn><isbn>1424477697</isbn><isbn>9781424477685</isbn><isbn>1424477700</isbn><isbn>1424477689</isbn><isbn>9781424477708</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1qwzAQhFVKoSX1E-SiF3CqX0s6FtOfQCCFGnoMK1kOamQnyCqlffoKmku-y-wuw8AsQktKVpQS87BuC92KkXKQjSLSyCtUGaWpYEIo1Wh5fbEbdouqef4kBcmUoOQOfbxBysFFj9-_IY14e8phDL-Qw3HCEHrf469pdn7KZTpAHGHCQ4jZJzwcE7YQY5hLAM6Q9j7jnMAdwrS_RzcDxNlXZ12g7vmpa1_rzfZl3T5u6mBIrrVRzCrgzvGe9cIpLr1m0g66l475hituhC9YcISDEcVnLLeljhm0o3yBlv-xoZh2pxRGSD-78zf4H6TvVR8</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Jatoth, Ravi Kumar</creator><creator>Rao, D Nagarjuna</creator><creator>Kumar, K Sumanth</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>Particle Swarm Optimization aided unscented kalman filter for ballistic target tracking</title><author>Jatoth, Ravi Kumar ; Rao, D Nagarjuna ; Kumar, K Sumanth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8972b7a3cc3d2d4c735e825bf8d5c2e637394eeeebac03a94c3d9b3b4479f8c13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ballistic target tracking</topic><topic>Covariance matrix</topic><topic>Gallium</topic><topic>Genetic Algorithm</topic><topic>Kalman filters</topic><topic>Noise</topic><topic>Particle swarm optimization</topic><topic>Radar tracking</topic><topic>Tuning</topic><topic>Unscented Kalman filter</topic><toplevel>online_resources</toplevel><creatorcontrib>Jatoth, Ravi Kumar</creatorcontrib><creatorcontrib>Rao, D Nagarjuna</creatorcontrib><creatorcontrib>Kumar, K Sumanth</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jatoth, Ravi Kumar</au><au>Rao, D Nagarjuna</au><au>Kumar, K Sumanth</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Particle Swarm Optimization aided unscented kalman filter for ballistic target tracking</atitle><btitle>2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES</btitle><stitle>ICCCCT</stitle><date>2010-10</date><risdate>2010</risdate><spage>455</spage><epage>460</epage><pages>455-460</pages><isbn>9781424477692</isbn><isbn>1424477697</isbn><eisbn>9781424477685</eisbn><eisbn>1424477700</eisbn><eisbn>1424477689</eisbn><eisbn>9781424477708</eisbn><abstract>Tracking of a ballistic target in its reentry phase by considering the radar measurements is a highly complex problem in nonlinear filtering. Kalman Filter (KF) is used to estimate the positions of the target when the measurements are corrupted with noise. If the measurements (range and bearing) are nonlinear then Unscented Kalman filter (UKF) can be used. For obtaining reliable estimate of the target state, filter has to be tuned before the operation, which is offline. Tuning is the process of estimating the process noise covariance matrix (Q) and measurement noise covariance matrix (R) of the filter. This paper presents tuning of UKF using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for ballistic target tracking. Simulations results show that the superiority of PSO tuned UKF over conventional UKF.</abstract><pub>IEEE</pub><doi>10.1109/ICCCCT.2010.5670595</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424477692
ispartof 2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES, 2010, p.455-460
issn
language eng
recordid cdi_ieee_primary_5670595
source IEEE Electronic Library (IEL) Conference Proceedings
subjects ballistic target tracking
Covariance matrix
Gallium
Genetic Algorithm
Kalman filters
Noise
Particle swarm optimization
Radar tracking
Tuning
Unscented Kalman filter
title Particle Swarm Optimization aided unscented kalman filter for ballistic target tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A10%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Particle%20Swarm%20Optimization%20aided%20unscented%20kalman%20filter%20for%20ballistic%20target%20tracking&rft.btitle=2010%20INTERNATIONAL%20CONFERENCE%20ON%20COMMUNICATION%20CONTROL%20AND%20COMPUTING%20TECHNOLOGIES&rft.au=Jatoth,%20Ravi%20Kumar&rft.date=2010-10&rft.spage=455&rft.epage=460&rft.pages=455-460&rft.isbn=9781424477692&rft.isbn_list=1424477697&rft_id=info:doi/10.1109/ICCCCT.2010.5670595&rft_dat=%3Cieee_6IE%3E5670595%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424477685&rft.eisbn_list=1424477700&rft.eisbn_list=1424477689&rft.eisbn_list=9781424477708&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5670595&rfr_iscdi=true