Closed loop modelling method for non-linear system using Laguerre polynomials

This paper presents a modelling method for noisy response data of a closed loop with a PI controller. A general pre-£ltering procedure is not required in this method. A three-step procedure for estimating Laplace transfer function of a process is proposed. The true closed loop response is estimated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hirama, Yusuke, Hamane, Hiroto, Hiroki, Fujio
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 236
container_issue
container_start_page 231
container_title
container_volume
creator Hirama, Yusuke
Hamane, Hiroto
Hiroki, Fujio
description This paper presents a modelling method for noisy response data of a closed loop with a PI controller. A general pre-£ltering procedure is not required in this method. A three-step procedure for estimating Laplace transfer function of a process is proposed. The true closed loop response is estimated from noisy response data, exploiting orthonormal properties of Laguerre functions. Then the closed loop transfer function model (called the Laguerre model) is represented by Laplace transforms of Laguerre polynomials approximated to a true response. Lastly, the process transfer function model is computed from the Laguerre model and the PI controller. PI parameters are given by gain constant, time constant and dead time of process approximated to £rst-order lag element plus dead-time system. Using this algorithm, the process model is estimated only by the settling time of response data. Simulation and experiment results show that the proposed method is effective for non-linear systems in modelling.
doi_str_mv 10.1109/ICCAS.2010.5670327
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5670327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5670327</ieee_id><sourcerecordid>5670327</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8b80b75af45f08d1559695c3501f5bc0c9dee57d5d72bad9e6c2be51dc8032d33</originalsourceid><addsrcrecordid>eNotj01OwzAUhI0QErT0ArDxBVL8kxfbyyoCWimIBd1XTvxSgpw4stNFbk8Qnc2nGY1GGkKeONtyzszLoSx3X1vBFg-FYlKoG7LSxkjBgQlxS1Y8F3mucpD8nmxS-mGLQCip-QP5KH1I6KgPYaR9cOh9N5xpj9N3cLQNkQ5hyJYMbaRpThP29JL-KpU9XzBGpGPw8xD6zvr0SO7aBbi5ck2Ob6_Hcp9Vn--HcldlnWFTpmvNagW2zaFl2nEAUxhoJDDeQt2wxjhEUA6cErV1BotG1AjcNXq556Rck-f_2Q4RT2Psehvn0_W9_AXrX09v</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Closed loop modelling method for non-linear system using Laguerre polynomials</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hirama, Yusuke ; Hamane, Hiroto ; Hiroki, Fujio</creator><creatorcontrib>Hirama, Yusuke ; Hamane, Hiroto ; Hiroki, Fujio</creatorcontrib><description>This paper presents a modelling method for noisy response data of a closed loop with a PI controller. A general pre-£ltering procedure is not required in this method. A three-step procedure for estimating Laplace transfer function of a process is proposed. The true closed loop response is estimated from noisy response data, exploiting orthonormal properties of Laguerre functions. Then the closed loop transfer function model (called the Laguerre model) is represented by Laplace transforms of Laguerre polynomials approximated to a true response. Lastly, the process transfer function model is computed from the Laguerre model and the PI controller. PI parameters are given by gain constant, time constant and dead time of process approximated to £rst-order lag element plus dead-time system. Using this algorithm, the process model is estimated only by the settling time of response data. Simulation and experiment results show that the proposed method is effective for non-linear systems in modelling.</description><identifier>ISBN: 1424474531</identifier><identifier>ISBN: 9781424474530</identifier><identifier>EISBN: 8993215022</identifier><identifier>EISBN: 9788993215021</identifier><identifier>DOI: 10.1109/ICCAS.2010.5670327</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Data models ; Disturbance ; Frequency response ; Laguerre functions ; Modelling ; Noise ; Noise measurement ; Non-linear system ; Polynomials ; Transfer functions</subject><ispartof>ICCAS 2010, 2010, p.231-236</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5670327$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5670327$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hirama, Yusuke</creatorcontrib><creatorcontrib>Hamane, Hiroto</creatorcontrib><creatorcontrib>Hiroki, Fujio</creatorcontrib><title>Closed loop modelling method for non-linear system using Laguerre polynomials</title><title>ICCAS 2010</title><addtitle>ICCAS</addtitle><description>This paper presents a modelling method for noisy response data of a closed loop with a PI controller. A general pre-£ltering procedure is not required in this method. A three-step procedure for estimating Laplace transfer function of a process is proposed. The true closed loop response is estimated from noisy response data, exploiting orthonormal properties of Laguerre functions. Then the closed loop transfer function model (called the Laguerre model) is represented by Laplace transforms of Laguerre polynomials approximated to a true response. Lastly, the process transfer function model is computed from the Laguerre model and the PI controller. PI parameters are given by gain constant, time constant and dead time of process approximated to £rst-order lag element plus dead-time system. Using this algorithm, the process model is estimated only by the settling time of response data. Simulation and experiment results show that the proposed method is effective for non-linear systems in modelling.</description><subject>Computational modeling</subject><subject>Data models</subject><subject>Disturbance</subject><subject>Frequency response</subject><subject>Laguerre functions</subject><subject>Modelling</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Non-linear system</subject><subject>Polynomials</subject><subject>Transfer functions</subject><isbn>1424474531</isbn><isbn>9781424474530</isbn><isbn>8993215022</isbn><isbn>9788993215021</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01OwzAUhI0QErT0ArDxBVL8kxfbyyoCWimIBd1XTvxSgpw4stNFbk8Qnc2nGY1GGkKeONtyzszLoSx3X1vBFg-FYlKoG7LSxkjBgQlxS1Y8F3mucpD8nmxS-mGLQCip-QP5KH1I6KgPYaR9cOh9N5xpj9N3cLQNkQ5hyJYMbaRpThP29JL-KpU9XzBGpGPw8xD6zvr0SO7aBbi5ck2Ob6_Hcp9Vn--HcldlnWFTpmvNagW2zaFl2nEAUxhoJDDeQt2wxjhEUA6cErV1BotG1AjcNXq556Rck-f_2Q4RT2Psehvn0_W9_AXrX09v</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Hirama, Yusuke</creator><creator>Hamane, Hiroto</creator><creator>Hiroki, Fujio</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>Closed loop modelling method for non-linear system using Laguerre polynomials</title><author>Hirama, Yusuke ; Hamane, Hiroto ; Hiroki, Fujio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8b80b75af45f08d1559695c3501f5bc0c9dee57d5d72bad9e6c2be51dc8032d33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computational modeling</topic><topic>Data models</topic><topic>Disturbance</topic><topic>Frequency response</topic><topic>Laguerre functions</topic><topic>Modelling</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Non-linear system</topic><topic>Polynomials</topic><topic>Transfer functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Hirama, Yusuke</creatorcontrib><creatorcontrib>Hamane, Hiroto</creatorcontrib><creatorcontrib>Hiroki, Fujio</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hirama, Yusuke</au><au>Hamane, Hiroto</au><au>Hiroki, Fujio</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Closed loop modelling method for non-linear system using Laguerre polynomials</atitle><btitle>ICCAS 2010</btitle><stitle>ICCAS</stitle><date>2010-10</date><risdate>2010</risdate><spage>231</spage><epage>236</epage><pages>231-236</pages><isbn>1424474531</isbn><isbn>9781424474530</isbn><eisbn>8993215022</eisbn><eisbn>9788993215021</eisbn><abstract>This paper presents a modelling method for noisy response data of a closed loop with a PI controller. A general pre-£ltering procedure is not required in this method. A three-step procedure for estimating Laplace transfer function of a process is proposed. The true closed loop response is estimated from noisy response data, exploiting orthonormal properties of Laguerre functions. Then the closed loop transfer function model (called the Laguerre model) is represented by Laplace transforms of Laguerre polynomials approximated to a true response. Lastly, the process transfer function model is computed from the Laguerre model and the PI controller. PI parameters are given by gain constant, time constant and dead time of process approximated to £rst-order lag element plus dead-time system. Using this algorithm, the process model is estimated only by the settling time of response data. Simulation and experiment results show that the proposed method is effective for non-linear systems in modelling.</abstract><pub>IEEE</pub><doi>10.1109/ICCAS.2010.5670327</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424474531
ispartof ICCAS 2010, 2010, p.231-236
issn
language eng
recordid cdi_ieee_primary_5670327
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational modeling
Data models
Disturbance
Frequency response
Laguerre functions
Modelling
Noise
Noise measurement
Non-linear system
Polynomials
Transfer functions
title Closed loop modelling method for non-linear system using Laguerre polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A24%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Closed%20loop%20modelling%20method%20for%20non-linear%20system%20using%20Laguerre%20polynomials&rft.btitle=ICCAS%202010&rft.au=Hirama,%20Yusuke&rft.date=2010-10&rft.spage=231&rft.epage=236&rft.pages=231-236&rft.isbn=1424474531&rft.isbn_list=9781424474530&rft_id=info:doi/10.1109/ICCAS.2010.5670327&rft_dat=%3Cieee_6IE%3E5670327%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=8993215022&rft.eisbn_list=9788993215021&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5670327&rfr_iscdi=true