Closed loop modelling method for non-linear system using Laguerre polynomials
This paper presents a modelling method for noisy response data of a closed loop with a PI controller. A general pre-£ltering procedure is not required in this method. A three-step procedure for estimating Laplace transfer function of a process is proposed. The true closed loop response is estimated...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 236 |
---|---|
container_issue | |
container_start_page | 231 |
container_title | |
container_volume | |
creator | Hirama, Yusuke Hamane, Hiroto Hiroki, Fujio |
description | This paper presents a modelling method for noisy response data of a closed loop with a PI controller. A general pre-£ltering procedure is not required in this method. A three-step procedure for estimating Laplace transfer function of a process is proposed. The true closed loop response is estimated from noisy response data, exploiting orthonormal properties of Laguerre functions. Then the closed loop transfer function model (called the Laguerre model) is represented by Laplace transforms of Laguerre polynomials approximated to a true response. Lastly, the process transfer function model is computed from the Laguerre model and the PI controller. PI parameters are given by gain constant, time constant and dead time of process approximated to £rst-order lag element plus dead-time system. Using this algorithm, the process model is estimated only by the settling time of response data. Simulation and experiment results show that the proposed method is effective for non-linear systems in modelling. |
doi_str_mv | 10.1109/ICCAS.2010.5670327 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5670327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5670327</ieee_id><sourcerecordid>5670327</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8b80b75af45f08d1559695c3501f5bc0c9dee57d5d72bad9e6c2be51dc8032d33</originalsourceid><addsrcrecordid>eNotj01OwzAUhI0QErT0ArDxBVL8kxfbyyoCWimIBd1XTvxSgpw4stNFbk8Qnc2nGY1GGkKeONtyzszLoSx3X1vBFg-FYlKoG7LSxkjBgQlxS1Y8F3mucpD8nmxS-mGLQCip-QP5KH1I6KgPYaR9cOh9N5xpj9N3cLQNkQ5hyJYMbaRpThP29JL-KpU9XzBGpGPw8xD6zvr0SO7aBbi5ck2Ob6_Hcp9Vn--HcldlnWFTpmvNagW2zaFl2nEAUxhoJDDeQt2wxjhEUA6cErV1BotG1AjcNXq556Rck-f_2Q4RT2Psehvn0_W9_AXrX09v</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Closed loop modelling method for non-linear system using Laguerre polynomials</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hirama, Yusuke ; Hamane, Hiroto ; Hiroki, Fujio</creator><creatorcontrib>Hirama, Yusuke ; Hamane, Hiroto ; Hiroki, Fujio</creatorcontrib><description>This paper presents a modelling method for noisy response data of a closed loop with a PI controller. A general pre-£ltering procedure is not required in this method. A three-step procedure for estimating Laplace transfer function of a process is proposed. The true closed loop response is estimated from noisy response data, exploiting orthonormal properties of Laguerre functions. Then the closed loop transfer function model (called the Laguerre model) is represented by Laplace transforms of Laguerre polynomials approximated to a true response. Lastly, the process transfer function model is computed from the Laguerre model and the PI controller. PI parameters are given by gain constant, time constant and dead time of process approximated to £rst-order lag element plus dead-time system. Using this algorithm, the process model is estimated only by the settling time of response data. Simulation and experiment results show that the proposed method is effective for non-linear systems in modelling.</description><identifier>ISBN: 1424474531</identifier><identifier>ISBN: 9781424474530</identifier><identifier>EISBN: 8993215022</identifier><identifier>EISBN: 9788993215021</identifier><identifier>DOI: 10.1109/ICCAS.2010.5670327</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Data models ; Disturbance ; Frequency response ; Laguerre functions ; Modelling ; Noise ; Noise measurement ; Non-linear system ; Polynomials ; Transfer functions</subject><ispartof>ICCAS 2010, 2010, p.231-236</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5670327$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5670327$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hirama, Yusuke</creatorcontrib><creatorcontrib>Hamane, Hiroto</creatorcontrib><creatorcontrib>Hiroki, Fujio</creatorcontrib><title>Closed loop modelling method for non-linear system using Laguerre polynomials</title><title>ICCAS 2010</title><addtitle>ICCAS</addtitle><description>This paper presents a modelling method for noisy response data of a closed loop with a PI controller. A general pre-£ltering procedure is not required in this method. A three-step procedure for estimating Laplace transfer function of a process is proposed. The true closed loop response is estimated from noisy response data, exploiting orthonormal properties of Laguerre functions. Then the closed loop transfer function model (called the Laguerre model) is represented by Laplace transforms of Laguerre polynomials approximated to a true response. Lastly, the process transfer function model is computed from the Laguerre model and the PI controller. PI parameters are given by gain constant, time constant and dead time of process approximated to £rst-order lag element plus dead-time system. Using this algorithm, the process model is estimated only by the settling time of response data. Simulation and experiment results show that the proposed method is effective for non-linear systems in modelling.</description><subject>Computational modeling</subject><subject>Data models</subject><subject>Disturbance</subject><subject>Frequency response</subject><subject>Laguerre functions</subject><subject>Modelling</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Non-linear system</subject><subject>Polynomials</subject><subject>Transfer functions</subject><isbn>1424474531</isbn><isbn>9781424474530</isbn><isbn>8993215022</isbn><isbn>9788993215021</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01OwzAUhI0QErT0ArDxBVL8kxfbyyoCWimIBd1XTvxSgpw4stNFbk8Qnc2nGY1GGkKeONtyzszLoSx3X1vBFg-FYlKoG7LSxkjBgQlxS1Y8F3mucpD8nmxS-mGLQCip-QP5KH1I6KgPYaR9cOh9N5xpj9N3cLQNkQ5hyJYMbaRpThP29JL-KpU9XzBGpGPw8xD6zvr0SO7aBbi5ck2Ob6_Hcp9Vn--HcldlnWFTpmvNagW2zaFl2nEAUxhoJDDeQt2wxjhEUA6cErV1BotG1AjcNXq556Rck-f_2Q4RT2Psehvn0_W9_AXrX09v</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Hirama, Yusuke</creator><creator>Hamane, Hiroto</creator><creator>Hiroki, Fujio</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>Closed loop modelling method for non-linear system using Laguerre polynomials</title><author>Hirama, Yusuke ; Hamane, Hiroto ; Hiroki, Fujio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8b80b75af45f08d1559695c3501f5bc0c9dee57d5d72bad9e6c2be51dc8032d33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computational modeling</topic><topic>Data models</topic><topic>Disturbance</topic><topic>Frequency response</topic><topic>Laguerre functions</topic><topic>Modelling</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Non-linear system</topic><topic>Polynomials</topic><topic>Transfer functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Hirama, Yusuke</creatorcontrib><creatorcontrib>Hamane, Hiroto</creatorcontrib><creatorcontrib>Hiroki, Fujio</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hirama, Yusuke</au><au>Hamane, Hiroto</au><au>Hiroki, Fujio</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Closed loop modelling method for non-linear system using Laguerre polynomials</atitle><btitle>ICCAS 2010</btitle><stitle>ICCAS</stitle><date>2010-10</date><risdate>2010</risdate><spage>231</spage><epage>236</epage><pages>231-236</pages><isbn>1424474531</isbn><isbn>9781424474530</isbn><eisbn>8993215022</eisbn><eisbn>9788993215021</eisbn><abstract>This paper presents a modelling method for noisy response data of a closed loop with a PI controller. A general pre-£ltering procedure is not required in this method. A three-step procedure for estimating Laplace transfer function of a process is proposed. The true closed loop response is estimated from noisy response data, exploiting orthonormal properties of Laguerre functions. Then the closed loop transfer function model (called the Laguerre model) is represented by Laplace transforms of Laguerre polynomials approximated to a true response. Lastly, the process transfer function model is computed from the Laguerre model and the PI controller. PI parameters are given by gain constant, time constant and dead time of process approximated to £rst-order lag element plus dead-time system. Using this algorithm, the process model is estimated only by the settling time of response data. Simulation and experiment results show that the proposed method is effective for non-linear systems in modelling.</abstract><pub>IEEE</pub><doi>10.1109/ICCAS.2010.5670327</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424474531 |
ispartof | ICCAS 2010, 2010, p.231-236 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5670327 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computational modeling Data models Disturbance Frequency response Laguerre functions Modelling Noise Noise measurement Non-linear system Polynomials Transfer functions |
title | Closed loop modelling method for non-linear system using Laguerre polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A24%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Closed%20loop%20modelling%20method%20for%20non-linear%20system%20using%20Laguerre%20polynomials&rft.btitle=ICCAS%202010&rft.au=Hirama,%20Yusuke&rft.date=2010-10&rft.spage=231&rft.epage=236&rft.pages=231-236&rft.isbn=1424474531&rft.isbn_list=9781424474530&rft_id=info:doi/10.1109/ICCAS.2010.5670327&rft_dat=%3Cieee_6IE%3E5670327%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=8993215022&rft.eisbn_list=9788993215021&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5670327&rfr_iscdi=true |