Numerical simulation for blood flow in Internal Carotid Artery for integration with photoelastic stress analysis
Fluid-structure interaction analysis in Internal Carotid Artery(ICA) are carried out as preparation for validation between the result of numerical simulation and photoelastic stress analysis. In this work, we assume blood vessel as an isotropic elastic medium and the wall's Poisson ratio is 0.4...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 389 |
---|---|
container_issue | |
container_start_page | 384 |
container_title | |
container_volume | |
creator | Kojima, M Tercero, C Ikeda, S Sakai, Y Fukuda, T Arai, F Negoro, M |
description | Fluid-structure interaction analysis in Internal Carotid Artery(ICA) are carried out as preparation for validation between the result of numerical simulation and photoelastic stress analysis. In this work, we assume blood vessel as an isotropic elastic medium and the wall's Poisson ratio is 0.45 and Young's modulus is 3.0Mpa. Our study shows various parameter on fluid dynamics of blood flow, such as the velocity profile, wall shear stress distribution, displacement of vessel wall and Mises stress. Blood flow after bifurcation generate vortex flow and decreases flow speed and wall shear stress nearly to 0Pa. This low wall shear stress can accelerate the accumulation of plaque and eventually causes vessel narrowing. Moreover, the maximum wall shear stress and Mises stress is focused on the bifurcation of ICA. These high stress may lead to aneurysm initiation. |
doi_str_mv | 10.1109/MHS.2010.5669515 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5669515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5669515</ieee_id><sourcerecordid>5669515</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-e691a4f737219ed7a9fddaec73bf4eb98ea51fc2f898f51c5f872fbc3f62f2c23</originalsourceid><addsrcrecordid>eNo1kD1PwzAQho0QElCyI7H4D6TEThzHYxUBrVRgoHvlOHfUKIkj21WVf09Eyy2n9-O54Qh5ZNmSsUw9v6-_ljyblShLJZi4Ives4EUhlSrlNUmUrP61ELckCeEnm0dwWXB-R8aPYw_eGt3RYPtjp6N1A0XnadM511Ls3InagW6GCH6YW7X2LtqWrvxsTH9NO2ff_kyebDzQ8eCig06HaA0N0UMIVM_wFGx4IDeouwDJZS_I7vVlV6_T7efbpl5tU6uymEKpmC5Q5pIzBa3UCttWg5F5gwU0qgItGBqOlapQMCOwkhwbk2PJkRueL8jT-awFgP3oba_9tL_8KP8FWEBeIQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Numerical simulation for blood flow in Internal Carotid Artery for integration with photoelastic stress analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kojima, M ; Tercero, C ; Ikeda, S ; Sakai, Y ; Fukuda, T ; Arai, F ; Negoro, M</creator><creatorcontrib>Kojima, M ; Tercero, C ; Ikeda, S ; Sakai, Y ; Fukuda, T ; Arai, F ; Negoro, M</creatorcontrib><description>Fluid-structure interaction analysis in Internal Carotid Artery(ICA) are carried out as preparation for validation between the result of numerical simulation and photoelastic stress analysis. In this work, we assume blood vessel as an isotropic elastic medium and the wall's Poisson ratio is 0.45 and Young's modulus is 3.0Mpa. Our study shows various parameter on fluid dynamics of blood flow, such as the velocity profile, wall shear stress distribution, displacement of vessel wall and Mises stress. Blood flow after bifurcation generate vortex flow and decreases flow speed and wall shear stress nearly to 0Pa. This low wall shear stress can accelerate the accumulation of plaque and eventually causes vessel narrowing. Moreover, the maximum wall shear stress and Mises stress is focused on the bifurcation of ICA. These high stress may lead to aneurysm initiation.</description><identifier>ISBN: 9781424479955</identifier><identifier>ISBN: 1424479959</identifier><identifier>EISBN: 1424479967</identifier><identifier>EISBN: 9781424479962</identifier><identifier>EISBN: 9781424479979</identifier><identifier>EISBN: 1424479975</identifier><identifier>DOI: 10.1109/MHS.2010.5669515</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aneurysm ; Stress</subject><ispartof>2010 International Symposium on Micro-NanoMechatronics and Human Science, 2010, p.384-389</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5669515$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5669515$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kojima, M</creatorcontrib><creatorcontrib>Tercero, C</creatorcontrib><creatorcontrib>Ikeda, S</creatorcontrib><creatorcontrib>Sakai, Y</creatorcontrib><creatorcontrib>Fukuda, T</creatorcontrib><creatorcontrib>Arai, F</creatorcontrib><creatorcontrib>Negoro, M</creatorcontrib><title>Numerical simulation for blood flow in Internal Carotid Artery for integration with photoelastic stress analysis</title><title>2010 International Symposium on Micro-NanoMechatronics and Human Science</title><addtitle>MHS</addtitle><description>Fluid-structure interaction analysis in Internal Carotid Artery(ICA) are carried out as preparation for validation between the result of numerical simulation and photoelastic stress analysis. In this work, we assume blood vessel as an isotropic elastic medium and the wall's Poisson ratio is 0.45 and Young's modulus is 3.0Mpa. Our study shows various parameter on fluid dynamics of blood flow, such as the velocity profile, wall shear stress distribution, displacement of vessel wall and Mises stress. Blood flow after bifurcation generate vortex flow and decreases flow speed and wall shear stress nearly to 0Pa. This low wall shear stress can accelerate the accumulation of plaque and eventually causes vessel narrowing. Moreover, the maximum wall shear stress and Mises stress is focused on the bifurcation of ICA. These high stress may lead to aneurysm initiation.</description><subject>Aneurysm</subject><subject>Stress</subject><isbn>9781424479955</isbn><isbn>1424479959</isbn><isbn>1424479967</isbn><isbn>9781424479962</isbn><isbn>9781424479979</isbn><isbn>1424479975</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kD1PwzAQho0QElCyI7H4D6TEThzHYxUBrVRgoHvlOHfUKIkj21WVf09Eyy2n9-O54Qh5ZNmSsUw9v6-_ljyblShLJZi4Ives4EUhlSrlNUmUrP61ELckCeEnm0dwWXB-R8aPYw_eGt3RYPtjp6N1A0XnadM511Ls3InagW6GCH6YW7X2LtqWrvxsTH9NO2ff_kyebDzQ8eCig06HaA0N0UMIVM_wFGx4IDeouwDJZS_I7vVlV6_T7efbpl5tU6uymEKpmC5Q5pIzBa3UCttWg5F5gwU0qgItGBqOlapQMCOwkhwbk2PJkRueL8jT-awFgP3oba_9tL_8KP8FWEBeIQ</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Kojima, M</creator><creator>Tercero, C</creator><creator>Ikeda, S</creator><creator>Sakai, Y</creator><creator>Fukuda, T</creator><creator>Arai, F</creator><creator>Negoro, M</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201011</creationdate><title>Numerical simulation for blood flow in Internal Carotid Artery for integration with photoelastic stress analysis</title><author>Kojima, M ; Tercero, C ; Ikeda, S ; Sakai, Y ; Fukuda, T ; Arai, F ; Negoro, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-e691a4f737219ed7a9fddaec73bf4eb98ea51fc2f898f51c5f872fbc3f62f2c23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aneurysm</topic><topic>Stress</topic><toplevel>online_resources</toplevel><creatorcontrib>Kojima, M</creatorcontrib><creatorcontrib>Tercero, C</creatorcontrib><creatorcontrib>Ikeda, S</creatorcontrib><creatorcontrib>Sakai, Y</creatorcontrib><creatorcontrib>Fukuda, T</creatorcontrib><creatorcontrib>Arai, F</creatorcontrib><creatorcontrib>Negoro, M</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kojima, M</au><au>Tercero, C</au><au>Ikeda, S</au><au>Sakai, Y</au><au>Fukuda, T</au><au>Arai, F</au><au>Negoro, M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Numerical simulation for blood flow in Internal Carotid Artery for integration with photoelastic stress analysis</atitle><btitle>2010 International Symposium on Micro-NanoMechatronics and Human Science</btitle><stitle>MHS</stitle><date>2010-11</date><risdate>2010</risdate><spage>384</spage><epage>389</epage><pages>384-389</pages><isbn>9781424479955</isbn><isbn>1424479959</isbn><eisbn>1424479967</eisbn><eisbn>9781424479962</eisbn><eisbn>9781424479979</eisbn><eisbn>1424479975</eisbn><abstract>Fluid-structure interaction analysis in Internal Carotid Artery(ICA) are carried out as preparation for validation between the result of numerical simulation and photoelastic stress analysis. In this work, we assume blood vessel as an isotropic elastic medium and the wall's Poisson ratio is 0.45 and Young's modulus is 3.0Mpa. Our study shows various parameter on fluid dynamics of blood flow, such as the velocity profile, wall shear stress distribution, displacement of vessel wall and Mises stress. Blood flow after bifurcation generate vortex flow and decreases flow speed and wall shear stress nearly to 0Pa. This low wall shear stress can accelerate the accumulation of plaque and eventually causes vessel narrowing. Moreover, the maximum wall shear stress and Mises stress is focused on the bifurcation of ICA. These high stress may lead to aneurysm initiation.</abstract><pub>IEEE</pub><doi>10.1109/MHS.2010.5669515</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424479955 |
ispartof | 2010 International Symposium on Micro-NanoMechatronics and Human Science, 2010, p.384-389 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5669515 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Aneurysm Stress |
title | Numerical simulation for blood flow in Internal Carotid Artery for integration with photoelastic stress analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A29%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Numerical%20simulation%20for%20blood%20flow%20in%20Internal%20Carotid%20Artery%20for%20integration%20with%20photoelastic%20stress%20analysis&rft.btitle=2010%20International%20Symposium%20on%20Micro-NanoMechatronics%20and%20Human%20Science&rft.au=Kojima,%20M&rft.date=2010-11&rft.spage=384&rft.epage=389&rft.pages=384-389&rft.isbn=9781424479955&rft.isbn_list=1424479959&rft_id=info:doi/10.1109/MHS.2010.5669515&rft_dat=%3Cieee_6IE%3E5669515%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424479967&rft.eisbn_list=9781424479962&rft.eisbn_list=9781424479979&rft.eisbn_list=1424479975&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5669515&rfr_iscdi=true |