Fault diagnosis system using LPC coefficients and neural network
As rotating machines perform an important role in industrial applications, many researchers have developed various condition monitoring system and fault diagnosis system by applying various techniques such as signal processing and pattern recognition. Recently, fault diagnosis systems using artifici...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 90 |
---|---|
container_issue | |
container_start_page | 87 |
container_title | |
container_volume | |
creator | Hyungseob Han Sangjin Cho Uipil Chong |
description | As rotating machines perform an important role in industrial applications, many researchers have developed various condition monitoring system and fault diagnosis system by applying various techniques such as signal processing and pattern recognition. Recently, fault diagnosis systems using artificial neural network have been proposed. This paper proposes the neural-network-based fault diagnosis system using the proper feature vectors by LPC (linear predictive coding) coefficients. This method has not been reported yet. For the effective fault diagnosis, a MLP (multi-layer perceptron) network is used. From the experiment results, the proposed system shows a perfect fault diagnosis for each faulty case. |
doi_str_mv | 10.1109/IFOST.2010.5667999 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5667999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5667999</ieee_id><sourcerecordid>5667999</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c2719b5d526d130076935c250fc074437f6b7d2ea3b769b7201d61883d8cfd383</originalsourceid><addsrcrecordid>eNpVj11LwzAYhSMyUGb_wLzJH-jMR5M3uVOK1UFhgr0faT5GtGulaZH9ewvuZufm4XDgwIPQhpItpUQ_7ar9Z7NlZOlCStBa36BMg6IFKwpNuOS3V13BHcpS-iJLBAPg-h49V2buJuyiOfZDigmnc5r8Cc8p9kdcf5TYDj6EaKPvp4RN73Dv59F0C6bfYfx-QKtguuSzC9eoqV6b8j2v92-78qXOoyZTbhlQ3QonmHSUEwJSc2GZIMESKAoOQbbgmDe8XaYWFiknqVLcKRscV3yNHv9vo_f-8DPGkxnPh4s2_wNjR0p3</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fault diagnosis system using LPC coefficients and neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hyungseob Han ; Sangjin Cho ; Uipil Chong</creator><creatorcontrib>Hyungseob Han ; Sangjin Cho ; Uipil Chong</creatorcontrib><description>As rotating machines perform an important role in industrial applications, many researchers have developed various condition monitoring system and fault diagnosis system by applying various techniques such as signal processing and pattern recognition. Recently, fault diagnosis systems using artificial neural network have been proposed. This paper proposes the neural-network-based fault diagnosis system using the proper feature vectors by LPC (linear predictive coding) coefficients. This method has not been reported yet. For the effective fault diagnosis, a MLP (multi-layer perceptron) network is used. From the experiment results, the proposed system shows a perfect fault diagnosis for each faulty case.</description><identifier>ISBN: 9781424490387</identifier><identifier>ISBN: 1424490383</identifier><identifier>EISBN: 9781424490363</identifier><identifier>EISBN: 1424490367</identifier><identifier>DOI: 10.1109/IFOST.2010.5667999</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; component ; Educational institutions ; Equations ; fault diagnosis ; Feature extraction ; LPC coefficients ; Mathematical model ; Monitoring ; neural network</subject><ispartof>International Forum on Strategic Technology 2010, 2010, p.87-90</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5667999$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5667999$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hyungseob Han</creatorcontrib><creatorcontrib>Sangjin Cho</creatorcontrib><creatorcontrib>Uipil Chong</creatorcontrib><title>Fault diagnosis system using LPC coefficients and neural network</title><title>International Forum on Strategic Technology 2010</title><addtitle>IFOST</addtitle><description>As rotating machines perform an important role in industrial applications, many researchers have developed various condition monitoring system and fault diagnosis system by applying various techniques such as signal processing and pattern recognition. Recently, fault diagnosis systems using artificial neural network have been proposed. This paper proposes the neural-network-based fault diagnosis system using the proper feature vectors by LPC (linear predictive coding) coefficients. This method has not been reported yet. For the effective fault diagnosis, a MLP (multi-layer perceptron) network is used. From the experiment results, the proposed system shows a perfect fault diagnosis for each faulty case.</description><subject>Biological system modeling</subject><subject>component</subject><subject>Educational institutions</subject><subject>Equations</subject><subject>fault diagnosis</subject><subject>Feature extraction</subject><subject>LPC coefficients</subject><subject>Mathematical model</subject><subject>Monitoring</subject><subject>neural network</subject><isbn>9781424490387</isbn><isbn>1424490383</isbn><isbn>9781424490363</isbn><isbn>1424490367</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj11LwzAYhSMyUGb_wLzJH-jMR5M3uVOK1UFhgr0faT5GtGulaZH9ewvuZufm4XDgwIPQhpItpUQ_7ar9Z7NlZOlCStBa36BMg6IFKwpNuOS3V13BHcpS-iJLBAPg-h49V2buJuyiOfZDigmnc5r8Cc8p9kdcf5TYDj6EaKPvp4RN73Dv59F0C6bfYfx-QKtguuSzC9eoqV6b8j2v92-78qXOoyZTbhlQ3QonmHSUEwJSc2GZIMESKAoOQbbgmDe8XaYWFiknqVLcKRscV3yNHv9vo_f-8DPGkxnPh4s2_wNjR0p3</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Hyungseob Han</creator><creator>Sangjin Cho</creator><creator>Uipil Chong</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>Fault diagnosis system using LPC coefficients and neural network</title><author>Hyungseob Han ; Sangjin Cho ; Uipil Chong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c2719b5d526d130076935c250fc074437f6b7d2ea3b769b7201d61883d8cfd383</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological system modeling</topic><topic>component</topic><topic>Educational institutions</topic><topic>Equations</topic><topic>fault diagnosis</topic><topic>Feature extraction</topic><topic>LPC coefficients</topic><topic>Mathematical model</topic><topic>Monitoring</topic><topic>neural network</topic><toplevel>online_resources</toplevel><creatorcontrib>Hyungseob Han</creatorcontrib><creatorcontrib>Sangjin Cho</creatorcontrib><creatorcontrib>Uipil Chong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hyungseob Han</au><au>Sangjin Cho</au><au>Uipil Chong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fault diagnosis system using LPC coefficients and neural network</atitle><btitle>International Forum on Strategic Technology 2010</btitle><stitle>IFOST</stitle><date>2010-10</date><risdate>2010</risdate><spage>87</spage><epage>90</epage><pages>87-90</pages><isbn>9781424490387</isbn><isbn>1424490383</isbn><eisbn>9781424490363</eisbn><eisbn>1424490367</eisbn><abstract>As rotating machines perform an important role in industrial applications, many researchers have developed various condition monitoring system and fault diagnosis system by applying various techniques such as signal processing and pattern recognition. Recently, fault diagnosis systems using artificial neural network have been proposed. This paper proposes the neural-network-based fault diagnosis system using the proper feature vectors by LPC (linear predictive coding) coefficients. This method has not been reported yet. For the effective fault diagnosis, a MLP (multi-layer perceptron) network is used. From the experiment results, the proposed system shows a perfect fault diagnosis for each faulty case.</abstract><pub>IEEE</pub><doi>10.1109/IFOST.2010.5667999</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424490387 |
ispartof | International Forum on Strategic Technology 2010, 2010, p.87-90 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5667999 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biological system modeling component Educational institutions Equations fault diagnosis Feature extraction LPC coefficients Mathematical model Monitoring neural network |
title | Fault diagnosis system using LPC coefficients and neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fault%20diagnosis%20system%20using%20LPC%20coefficients%20and%20neural%20network&rft.btitle=International%20Forum%20on%20Strategic%20Technology%202010&rft.au=Hyungseob%20Han&rft.date=2010-10&rft.spage=87&rft.epage=90&rft.pages=87-90&rft.isbn=9781424490387&rft.isbn_list=1424490383&rft_id=info:doi/10.1109/IFOST.2010.5667999&rft_dat=%3Cieee_6IE%3E5667999%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424490363&rft.eisbn_list=1424490367&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5667999&rfr_iscdi=true |