Fault diagnosis system using LPC coefficients and neural network

As rotating machines perform an important role in industrial applications, many researchers have developed various condition monitoring system and fault diagnosis system by applying various techniques such as signal processing and pattern recognition. Recently, fault diagnosis systems using artifici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hyungseob Han, Sangjin Cho, Uipil Chong
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 90
container_issue
container_start_page 87
container_title
container_volume
creator Hyungseob Han
Sangjin Cho
Uipil Chong
description As rotating machines perform an important role in industrial applications, many researchers have developed various condition monitoring system and fault diagnosis system by applying various techniques such as signal processing and pattern recognition. Recently, fault diagnosis systems using artificial neural network have been proposed. This paper proposes the neural-network-based fault diagnosis system using the proper feature vectors by LPC (linear predictive coding) coefficients. This method has not been reported yet. For the effective fault diagnosis, a MLP (multi-layer perceptron) network is used. From the experiment results, the proposed system shows a perfect fault diagnosis for each faulty case.
doi_str_mv 10.1109/IFOST.2010.5667999
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5667999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5667999</ieee_id><sourcerecordid>5667999</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c2719b5d526d130076935c250fc074437f6b7d2ea3b769b7201d61883d8cfd383</originalsourceid><addsrcrecordid>eNpVj11LwzAYhSMyUGb_wLzJH-jMR5M3uVOK1UFhgr0faT5GtGulaZH9ewvuZufm4XDgwIPQhpItpUQ_7ar9Z7NlZOlCStBa36BMg6IFKwpNuOS3V13BHcpS-iJLBAPg-h49V2buJuyiOfZDigmnc5r8Cc8p9kdcf5TYDj6EaKPvp4RN73Dv59F0C6bfYfx-QKtguuSzC9eoqV6b8j2v92-78qXOoyZTbhlQ3QonmHSUEwJSc2GZIMESKAoOQbbgmDe8XaYWFiknqVLcKRscV3yNHv9vo_f-8DPGkxnPh4s2_wNjR0p3</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fault diagnosis system using LPC coefficients and neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hyungseob Han ; Sangjin Cho ; Uipil Chong</creator><creatorcontrib>Hyungseob Han ; Sangjin Cho ; Uipil Chong</creatorcontrib><description>As rotating machines perform an important role in industrial applications, many researchers have developed various condition monitoring system and fault diagnosis system by applying various techniques such as signal processing and pattern recognition. Recently, fault diagnosis systems using artificial neural network have been proposed. This paper proposes the neural-network-based fault diagnosis system using the proper feature vectors by LPC (linear predictive coding) coefficients. This method has not been reported yet. For the effective fault diagnosis, a MLP (multi-layer perceptron) network is used. From the experiment results, the proposed system shows a perfect fault diagnosis for each faulty case.</description><identifier>ISBN: 9781424490387</identifier><identifier>ISBN: 1424490383</identifier><identifier>EISBN: 9781424490363</identifier><identifier>EISBN: 1424490367</identifier><identifier>DOI: 10.1109/IFOST.2010.5667999</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; component ; Educational institutions ; Equations ; fault diagnosis ; Feature extraction ; LPC coefficients ; Mathematical model ; Monitoring ; neural network</subject><ispartof>International Forum on Strategic Technology 2010, 2010, p.87-90</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5667999$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5667999$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hyungseob Han</creatorcontrib><creatorcontrib>Sangjin Cho</creatorcontrib><creatorcontrib>Uipil Chong</creatorcontrib><title>Fault diagnosis system using LPC coefficients and neural network</title><title>International Forum on Strategic Technology 2010</title><addtitle>IFOST</addtitle><description>As rotating machines perform an important role in industrial applications, many researchers have developed various condition monitoring system and fault diagnosis system by applying various techniques such as signal processing and pattern recognition. Recently, fault diagnosis systems using artificial neural network have been proposed. This paper proposes the neural-network-based fault diagnosis system using the proper feature vectors by LPC (linear predictive coding) coefficients. This method has not been reported yet. For the effective fault diagnosis, a MLP (multi-layer perceptron) network is used. From the experiment results, the proposed system shows a perfect fault diagnosis for each faulty case.</description><subject>Biological system modeling</subject><subject>component</subject><subject>Educational institutions</subject><subject>Equations</subject><subject>fault diagnosis</subject><subject>Feature extraction</subject><subject>LPC coefficients</subject><subject>Mathematical model</subject><subject>Monitoring</subject><subject>neural network</subject><isbn>9781424490387</isbn><isbn>1424490383</isbn><isbn>9781424490363</isbn><isbn>1424490367</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj11LwzAYhSMyUGb_wLzJH-jMR5M3uVOK1UFhgr0faT5GtGulaZH9ewvuZufm4XDgwIPQhpItpUQ_7ar9Z7NlZOlCStBa36BMg6IFKwpNuOS3V13BHcpS-iJLBAPg-h49V2buJuyiOfZDigmnc5r8Cc8p9kdcf5TYDj6EaKPvp4RN73Dv59F0C6bfYfx-QKtguuSzC9eoqV6b8j2v92-78qXOoyZTbhlQ3QonmHSUEwJSc2GZIMESKAoOQbbgmDe8XaYWFiknqVLcKRscV3yNHv9vo_f-8DPGkxnPh4s2_wNjR0p3</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Hyungseob Han</creator><creator>Sangjin Cho</creator><creator>Uipil Chong</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>Fault diagnosis system using LPC coefficients and neural network</title><author>Hyungseob Han ; Sangjin Cho ; Uipil Chong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c2719b5d526d130076935c250fc074437f6b7d2ea3b769b7201d61883d8cfd383</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological system modeling</topic><topic>component</topic><topic>Educational institutions</topic><topic>Equations</topic><topic>fault diagnosis</topic><topic>Feature extraction</topic><topic>LPC coefficients</topic><topic>Mathematical model</topic><topic>Monitoring</topic><topic>neural network</topic><toplevel>online_resources</toplevel><creatorcontrib>Hyungseob Han</creatorcontrib><creatorcontrib>Sangjin Cho</creatorcontrib><creatorcontrib>Uipil Chong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hyungseob Han</au><au>Sangjin Cho</au><au>Uipil Chong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fault diagnosis system using LPC coefficients and neural network</atitle><btitle>International Forum on Strategic Technology 2010</btitle><stitle>IFOST</stitle><date>2010-10</date><risdate>2010</risdate><spage>87</spage><epage>90</epage><pages>87-90</pages><isbn>9781424490387</isbn><isbn>1424490383</isbn><eisbn>9781424490363</eisbn><eisbn>1424490367</eisbn><abstract>As rotating machines perform an important role in industrial applications, many researchers have developed various condition monitoring system and fault diagnosis system by applying various techniques such as signal processing and pattern recognition. Recently, fault diagnosis systems using artificial neural network have been proposed. This paper proposes the neural-network-based fault diagnosis system using the proper feature vectors by LPC (linear predictive coding) coefficients. This method has not been reported yet. For the effective fault diagnosis, a MLP (multi-layer perceptron) network is used. From the experiment results, the proposed system shows a perfect fault diagnosis for each faulty case.</abstract><pub>IEEE</pub><doi>10.1109/IFOST.2010.5667999</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424490387
ispartof International Forum on Strategic Technology 2010, 2010, p.87-90
issn
language eng
recordid cdi_ieee_primary_5667999
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological system modeling
component
Educational institutions
Equations
fault diagnosis
Feature extraction
LPC coefficients
Mathematical model
Monitoring
neural network
title Fault diagnosis system using LPC coefficients and neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fault%20diagnosis%20system%20using%20LPC%20coefficients%20and%20neural%20network&rft.btitle=International%20Forum%20on%20Strategic%20Technology%202010&rft.au=Hyungseob%20Han&rft.date=2010-10&rft.spage=87&rft.epage=90&rft.pages=87-90&rft.isbn=9781424490387&rft.isbn_list=1424490383&rft_id=info:doi/10.1109/IFOST.2010.5667999&rft_dat=%3Cieee_6IE%3E5667999%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424490363&rft.eisbn_list=1424490367&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5667999&rfr_iscdi=true