The corn output in a time series prediction model

This paper selected the raw data of the corn output of Dehui City, Jilin Province from 1990 to 2000, through data cleansing, data conversion and data integration technologies obtains time series data set, choosing the appropriate time series methods ARIMA(Autoregressive Integrated Moving Average) to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Guifen Chen, Xingmei Xu, Guowei Wang, Hang Chen
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 286
container_issue
container_start_page 283
container_title
container_volume
creator Guifen Chen
Xingmei Xu
Guowei Wang
Hang Chen
description This paper selected the raw data of the corn output of Dehui City, Jilin Province from 1990 to 2000, through data cleansing, data conversion and data integration technologies obtains time series data set, choosing the appropriate time series methods ARIMA(Autoregressive Integrated Moving Average) to confirm the corn output in a time series prediction model. The experimental results show that comparing the actual output and the prediction achieved by the model of corn output from 2001 to 2003, the error is very small; the relative error can be controlled within 5%. This proves that the ARIMA(2,2,1) model can fairly predict the developing trend of the corn output in this region, and the result of the prediction can provide very important theory evidence for the agricultural production management department to make decisions.
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5665492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5665492</ieee_id><sourcerecordid>5665492</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a84f6dce1f120e3be7c5c1baac6946c020009c8ed922e82387ff016626519eeb3</originalsourceid><addsrcrecordid>eNo9jstqwzAURNUXNCT-gm70Awbp6kqWliX0BYFsvA-yfEUV4geysujf15DS2QzDgeHcsco1VlrrlNII8p5tQGqs0Sp4uDEERGcaJR7_GeAzq5blLNbodSqxYbL9Jh6mPPLpWuZr4Wnknpc0EF8oJ1r4nKlPoaRp5MPU02XHnqK_LFT99Za172_t_rM-HD--9q-HOjlRam8xmj6QjBIEqY6aoIPsvA_GoQkCVgcXLPUOgFYV28QopDFgtHREndqyl9ttIqLTnNPg889JG6PRgfoFdCVDZg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The corn output in a time series prediction model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Guifen Chen ; Xingmei Xu ; Guowei Wang ; Hang Chen</creator><creatorcontrib>Guifen Chen ; Xingmei Xu ; Guowei Wang ; Hang Chen</creatorcontrib><description>This paper selected the raw data of the corn output of Dehui City, Jilin Province from 1990 to 2000, through data cleansing, data conversion and data integration technologies obtains time series data set, choosing the appropriate time series methods ARIMA(Autoregressive Integrated Moving Average) to confirm the corn output in a time series prediction model. The experimental results show that comparing the actual output and the prediction achieved by the model of corn output from 2001 to 2003, the error is very small; the relative error can be controlled within 5%. This proves that the ARIMA(2,2,1) model can fairly predict the developing trend of the corn output in this region, and the result of the prediction can provide very important theory evidence for the agricultural production management department to make decisions.</description><identifier>ISSN: 2154-4824</identifier><identifier>ISBN: 9781424496730</identifier><identifier>ISBN: 142449673X</identifier><identifier>EISSN: 2154-4832</identifier><identifier>EISBN: 9781889335421</identifier><identifier>EISBN: 1889335428</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation model ; Analytical models ; ARIMA ; Correlation ; Data models ; non-parameter ; prediction model ; Predictive models ; Production ; statistics ; time series ; Time series analysis</subject><ispartof>2010 World Automation Congress, 2010, p.283-286</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5665492$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,54922</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5665492$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guifen Chen</creatorcontrib><creatorcontrib>Xingmei Xu</creatorcontrib><creatorcontrib>Guowei Wang</creatorcontrib><creatorcontrib>Hang Chen</creatorcontrib><title>The corn output in a time series prediction model</title><title>2010 World Automation Congress</title><addtitle>WAC</addtitle><description>This paper selected the raw data of the corn output of Dehui City, Jilin Province from 1990 to 2000, through data cleansing, data conversion and data integration technologies obtains time series data set, choosing the appropriate time series methods ARIMA(Autoregressive Integrated Moving Average) to confirm the corn output in a time series prediction model. The experimental results show that comparing the actual output and the prediction achieved by the model of corn output from 2001 to 2003, the error is very small; the relative error can be controlled within 5%. This proves that the ARIMA(2,2,1) model can fairly predict the developing trend of the corn output in this region, and the result of the prediction can provide very important theory evidence for the agricultural production management department to make decisions.</description><subject>Adaptation model</subject><subject>Analytical models</subject><subject>ARIMA</subject><subject>Correlation</subject><subject>Data models</subject><subject>non-parameter</subject><subject>prediction model</subject><subject>Predictive models</subject><subject>Production</subject><subject>statistics</subject><subject>time series</subject><subject>Time series analysis</subject><issn>2154-4824</issn><issn>2154-4832</issn><isbn>9781424496730</isbn><isbn>142449673X</isbn><isbn>9781889335421</isbn><isbn>1889335428</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9jstqwzAURNUXNCT-gm70Awbp6kqWliX0BYFsvA-yfEUV4geysujf15DS2QzDgeHcsco1VlrrlNII8p5tQGqs0Sp4uDEERGcaJR7_GeAzq5blLNbodSqxYbL9Jh6mPPLpWuZr4Wnknpc0EF8oJ1r4nKlPoaRp5MPU02XHnqK_LFT99Za172_t_rM-HD--9q-HOjlRam8xmj6QjBIEqY6aoIPsvA_GoQkCVgcXLPUOgFYV28QopDFgtHREndqyl9ttIqLTnNPg889JG6PRgfoFdCVDZg</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Guifen Chen</creator><creator>Xingmei Xu</creator><creator>Guowei Wang</creator><creator>Hang Chen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201009</creationdate><title>The corn output in a time series prediction model</title><author>Guifen Chen ; Xingmei Xu ; Guowei Wang ; Hang Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a84f6dce1f120e3be7c5c1baac6946c020009c8ed922e82387ff016626519eeb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptation model</topic><topic>Analytical models</topic><topic>ARIMA</topic><topic>Correlation</topic><topic>Data models</topic><topic>non-parameter</topic><topic>prediction model</topic><topic>Predictive models</topic><topic>Production</topic><topic>statistics</topic><topic>time series</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Guifen Chen</creatorcontrib><creatorcontrib>Xingmei Xu</creatorcontrib><creatorcontrib>Guowei Wang</creatorcontrib><creatorcontrib>Hang Chen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guifen Chen</au><au>Xingmei Xu</au><au>Guowei Wang</au><au>Hang Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The corn output in a time series prediction model</atitle><btitle>2010 World Automation Congress</btitle><stitle>WAC</stitle><date>2010-09</date><risdate>2010</risdate><spage>283</spage><epage>286</epage><pages>283-286</pages><issn>2154-4824</issn><eissn>2154-4832</eissn><isbn>9781424496730</isbn><isbn>142449673X</isbn><eisbn>9781889335421</eisbn><eisbn>1889335428</eisbn><abstract>This paper selected the raw data of the corn output of Dehui City, Jilin Province from 1990 to 2000, through data cleansing, data conversion and data integration technologies obtains time series data set, choosing the appropriate time series methods ARIMA(Autoregressive Integrated Moving Average) to confirm the corn output in a time series prediction model. The experimental results show that comparing the actual output and the prediction achieved by the model of corn output from 2001 to 2003, the error is very small; the relative error can be controlled within 5%. This proves that the ARIMA(2,2,1) model can fairly predict the developing trend of the corn output in this region, and the result of the prediction can provide very important theory evidence for the agricultural production management department to make decisions.</abstract><pub>IEEE</pub><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2154-4824
ispartof 2010 World Automation Congress, 2010, p.283-286
issn 2154-4824
2154-4832
language eng
recordid cdi_ieee_primary_5665492
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptation model
Analytical models
ARIMA
Correlation
Data models
non-parameter
prediction model
Predictive models
Production
statistics
time series
Time series analysis
title The corn output in a time series prediction model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20corn%20output%20in%20a%20time%20series%20prediction%20model&rft.btitle=2010%20World%20Automation%20Congress&rft.au=Guifen%20Chen&rft.date=2010-09&rft.spage=283&rft.epage=286&rft.pages=283-286&rft.issn=2154-4824&rft.eissn=2154-4832&rft.isbn=9781424496730&rft.isbn_list=142449673X&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E5665492%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781889335421&rft.eisbn_list=1889335428&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5665492&rfr_iscdi=true