FMO selection using Markov model in H.264 for slow fading wireless channels

In this paper, we present a framework on how to more effectively utilize FMO for video transmission with low bandwidth and low delay constraints under slow fading wireless channel impairments using markov model for channel prediction. The condition of the channel is predicted to be good or bad based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cajote, R D, Aramvith, S
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1135
container_issue
container_start_page 1131
container_title
container_volume
creator Cajote, R D
Aramvith, S
description In this paper, we present a framework on how to more effectively utilize FMO for video transmission with low bandwidth and low delay constraints under slow fading wireless channel impairments using markov model for channel prediction. The condition of the channel is predicted to be good or bad based on the feedback information from the decoder. FMO is enabled with different number of slice groups during the times that the channel is predicted to be experiencing burst errors. This scheme fully utilizes the error resilient properties of FMO by disabling FMO during the times that the channel is good. For the transmission systems under test at 20 kbps, the proposed scheme of adaptive FMO mode selection can obtain a 0.5 dB improvement in PSNR as compared to other schemes with FMO enabled for the entire video sequence.
doi_str_mv 10.1109/ISCIT.2010.5665157
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5665157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5665157</ieee_id><sourcerecordid>5665157</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-64fcfb41008a88d5ca5399957b9ae61a563c1e526da5c70ed563f0703a1511a83</originalsourceid><addsrcrecordid>eNo1T81OwzAYC0JIwOgLwCUv0PLlvzmiirGKTTvQ-_QtTSDQtagZTLz9ihi-WLZsSybklkHBGNj7-qWqm4LDpJXWiilzRjJrSia5lAbA2nNy_S8MvyRZSu8wQXEjJLsiz_PVmibfebePQ0-_Uuxf6QrHj-Gb7obWdzT2dFFwLWkYRpq64UADtr-pQxynXkrUvWHf-y7dkIuAXfLZiWekmT821SJfrp_q6mGZRwv7XMvgwlYygBLLslUOlbDWKrO16DVDpYVjXnHdonIGfDsZAQwIZIoxLMWM3P3NRu_95nOMOxx_Nqf74giknEzL</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>FMO selection using Markov model in H.264 for slow fading wireless channels</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cajote, R D ; Aramvith, S</creator><creatorcontrib>Cajote, R D ; Aramvith, S</creatorcontrib><description>In this paper, we present a framework on how to more effectively utilize FMO for video transmission with low bandwidth and low delay constraints under slow fading wireless channel impairments using markov model for channel prediction. The condition of the channel is predicted to be good or bad based on the feedback information from the decoder. FMO is enabled with different number of slice groups during the times that the channel is predicted to be experiencing burst errors. This scheme fully utilizes the error resilient properties of FMO by disabling FMO during the times that the channel is good. For the transmission systems under test at 20 kbps, the proposed scheme of adaptive FMO mode selection can obtain a 0.5 dB improvement in PSNR as compared to other schemes with FMO enabled for the entire video sequence.</description><identifier>ISBN: 1424470072</identifier><identifier>ISBN: 9781424470075</identifier><identifier>EISBN: 9781424470099</identifier><identifier>EISBN: 9781424470105</identifier><identifier>EISBN: 1424470099</identifier><identifier>EISBN: 1424470102</identifier><identifier>DOI: 10.1109/ISCIT.2010.5665157</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic voltage control ; Computational modeling ; Encoding ; Fading ; Markov processes ; Predictive models ; Wireless communication</subject><ispartof>2010 10th International Symposium on Communications and Information Technologies, 2010, p.1131-1135</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5665157$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27916,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5665157$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cajote, R D</creatorcontrib><creatorcontrib>Aramvith, S</creatorcontrib><title>FMO selection using Markov model in H.264 for slow fading wireless channels</title><title>2010 10th International Symposium on Communications and Information Technologies</title><addtitle>ISCIT</addtitle><description>In this paper, we present a framework on how to more effectively utilize FMO for video transmission with low bandwidth and low delay constraints under slow fading wireless channel impairments using markov model for channel prediction. The condition of the channel is predicted to be good or bad based on the feedback information from the decoder. FMO is enabled with different number of slice groups during the times that the channel is predicted to be experiencing burst errors. This scheme fully utilizes the error resilient properties of FMO by disabling FMO during the times that the channel is good. For the transmission systems under test at 20 kbps, the proposed scheme of adaptive FMO mode selection can obtain a 0.5 dB improvement in PSNR as compared to other schemes with FMO enabled for the entire video sequence.</description><subject>Automatic voltage control</subject><subject>Computational modeling</subject><subject>Encoding</subject><subject>Fading</subject><subject>Markov processes</subject><subject>Predictive models</subject><subject>Wireless communication</subject><isbn>1424470072</isbn><isbn>9781424470075</isbn><isbn>9781424470099</isbn><isbn>9781424470105</isbn><isbn>1424470099</isbn><isbn>1424470102</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1T81OwzAYC0JIwOgLwCUv0PLlvzmiirGKTTvQ-_QtTSDQtagZTLz9ihi-WLZsSybklkHBGNj7-qWqm4LDpJXWiilzRjJrSia5lAbA2nNy_S8MvyRZSu8wQXEjJLsiz_PVmibfebePQ0-_Uuxf6QrHj-Gb7obWdzT2dFFwLWkYRpq64UADtr-pQxynXkrUvWHf-y7dkIuAXfLZiWekmT821SJfrp_q6mGZRwv7XMvgwlYygBLLslUOlbDWKrO16DVDpYVjXnHdonIGfDsZAQwIZIoxLMWM3P3NRu_95nOMOxx_Nqf74giknEzL</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Cajote, R D</creator><creator>Aramvith, S</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>FMO selection using Markov model in H.264 for slow fading wireless channels</title><author>Cajote, R D ; Aramvith, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-64fcfb41008a88d5ca5399957b9ae61a563c1e526da5c70ed563f0703a1511a83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Automatic voltage control</topic><topic>Computational modeling</topic><topic>Encoding</topic><topic>Fading</topic><topic>Markov processes</topic><topic>Predictive models</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Cajote, R D</creatorcontrib><creatorcontrib>Aramvith, S</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cajote, R D</au><au>Aramvith, S</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>FMO selection using Markov model in H.264 for slow fading wireless channels</atitle><btitle>2010 10th International Symposium on Communications and Information Technologies</btitle><stitle>ISCIT</stitle><date>2010-10</date><risdate>2010</risdate><spage>1131</spage><epage>1135</epage><pages>1131-1135</pages><isbn>1424470072</isbn><isbn>9781424470075</isbn><eisbn>9781424470099</eisbn><eisbn>9781424470105</eisbn><eisbn>1424470099</eisbn><eisbn>1424470102</eisbn><abstract>In this paper, we present a framework on how to more effectively utilize FMO for video transmission with low bandwidth and low delay constraints under slow fading wireless channel impairments using markov model for channel prediction. The condition of the channel is predicted to be good or bad based on the feedback information from the decoder. FMO is enabled with different number of slice groups during the times that the channel is predicted to be experiencing burst errors. This scheme fully utilizes the error resilient properties of FMO by disabling FMO during the times that the channel is good. For the transmission systems under test at 20 kbps, the proposed scheme of adaptive FMO mode selection can obtain a 0.5 dB improvement in PSNR as compared to other schemes with FMO enabled for the entire video sequence.</abstract><pub>IEEE</pub><doi>10.1109/ISCIT.2010.5665157</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424470072
ispartof 2010 10th International Symposium on Communications and Information Technologies, 2010, p.1131-1135
issn
language eng
recordid cdi_ieee_primary_5665157
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automatic voltage control
Computational modeling
Encoding
Fading
Markov processes
Predictive models
Wireless communication
title FMO selection using Markov model in H.264 for slow fading wireless channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T20%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=FMO%20selection%20using%20Markov%20model%20in%20H.264%20for%20slow%20fading%20wireless%20channels&rft.btitle=2010%2010th%20International%20Symposium%20on%20Communications%20and%20Information%20Technologies&rft.au=Cajote,%20R%20D&rft.date=2010-10&rft.spage=1131&rft.epage=1135&rft.pages=1131-1135&rft.isbn=1424470072&rft.isbn_list=9781424470075&rft_id=info:doi/10.1109/ISCIT.2010.5665157&rft_dat=%3Cieee_6IE%3E5665157%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424470099&rft.eisbn_list=9781424470105&rft.eisbn_list=1424470099&rft.eisbn_list=1424470102&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5665157&rfr_iscdi=true