Energy-constrained bi-objective data muling in underwater wireless sensor networks
For underwater wireless sensor networks (UWSNs), data muling is an effective approach to extending network coverage and lifetime. Sensor data are collected when a mobile data mule travels within the wireless communication range of the sensor. Given the constrained energy available on a data mule and...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 341 |
---|---|
container_issue | |
container_start_page | 332 |
container_title | |
container_volume | |
creator | Ke Li Chien-Chung Shen Guaning Chen |
description | For underwater wireless sensor networks (UWSNs), data muling is an effective approach to extending network coverage and lifetime. Sensor data are collected when a mobile data mule travels within the wireless communication range of the sensor. Given the constrained energy available on a data mule and the energy consumption of its communications and movement operations, a data mule may be prevented from visiting every deployed sensor in a tour. We formulate the tour planning of a data mule collecting sensor data in UWSNs as an energy-constrained bi-objective optimization problem termed the Underwater Data Muling Problem (UDMP). UDMP has the two conflicting objectives of minimizing the length of a tour and maximizing the number of sensors contacted, while satisfying the energy constraint of the data mule at all times. We design an approximation algorithm to solve one special case of this NP-hard problem, which computes a set of Pareto-efficient solutions addressing the tradeoff between the two optimization objectives so as to make proper tour planning. Simulation results validate the effectiveness of this algorithm.. |
doi_str_mv | 10.1109/MASS.2010.5664026 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5664026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5664026</ieee_id><sourcerecordid>5664026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1816-6df7638bcb39c2823c7593bd5067eb4218f69e6e73220aaa3fef69aa1fc96f233</originalsourceid><addsrcrecordid>eNpNkNtKAzEYhOMJLHUfQLzJC2zNYfMnuSylHqAiWL0u2ey_JbXNSrK19O1dsIhzM8w3MBdDyC1nE86ZvX-ZLpcTwYaoACom4IwUVhteiarSlWXqnIwEV6qEgV3874wRl38dg2tS5Lxhg5TQ0sCIvM0jpvWx9F3MfXIhYkPrUHb1Bn0fvpE2rnd0t9-GuKYh0n1sMB1cj4keQsIt5kwzxtwlGrE_dOkz35Cr1m0zFicfk4-H-fvsqVy8Pj7PpovSc8OhhKbVIE3ta2m9MEJ6raysG8VAY10JblqwCKilEMw5J1scgHO89RZaIeWY3P3uBkRcfaWwc-m4Oj0kfwAQjlZl</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Energy-constrained bi-objective data muling in underwater wireless sensor networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ke Li ; Chien-Chung Shen ; Guaning Chen</creator><creatorcontrib>Ke Li ; Chien-Chung Shen ; Guaning Chen</creatorcontrib><description>For underwater wireless sensor networks (UWSNs), data muling is an effective approach to extending network coverage and lifetime. Sensor data are collected when a mobile data mule travels within the wireless communication range of the sensor. Given the constrained energy available on a data mule and the energy consumption of its communications and movement operations, a data mule may be prevented from visiting every deployed sensor in a tour. We formulate the tour planning of a data mule collecting sensor data in UWSNs as an energy-constrained bi-objective optimization problem termed the Underwater Data Muling Problem (UDMP). UDMP has the two conflicting objectives of minimizing the length of a tour and maximizing the number of sensors contacted, while satisfying the energy constraint of the data mule at all times. We design an approximation algorithm to solve one special case of this NP-hard problem, which computes a set of Pareto-efficient solutions addressing the tradeoff between the two optimization objectives so as to make proper tour planning. Simulation results validate the effectiveness of this algorithm..</description><identifier>ISSN: 2155-6806</identifier><identifier>ISBN: 9781424474882</identifier><identifier>ISBN: 1424474884</identifier><identifier>EISSN: 2155-6814</identifier><identifier>EISBN: 9781424474905</identifier><identifier>EISBN: 1424474892</identifier><identifier>EISBN: 9781424474899</identifier><identifier>EISBN: 1424474906</identifier><identifier>DOI: 10.1109/MASS.2010.5664026</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Batteries ; data muling ; Energy consumption ; heuristic algorithm ; Planning ; Robot sensing systems ; tour planning ; underwater wireless sensor networks ; Wireless communication ; Wireless sensor networks</subject><ispartof>The 7th IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2010), 2010, p.332-341</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1816-6df7638bcb39c2823c7593bd5067eb4218f69e6e73220aaa3fef69aa1fc96f233</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5664026$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5664026$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ke Li</creatorcontrib><creatorcontrib>Chien-Chung Shen</creatorcontrib><creatorcontrib>Guaning Chen</creatorcontrib><title>Energy-constrained bi-objective data muling in underwater wireless sensor networks</title><title>The 7th IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2010)</title><addtitle>MASS</addtitle><description>For underwater wireless sensor networks (UWSNs), data muling is an effective approach to extending network coverage and lifetime. Sensor data are collected when a mobile data mule travels within the wireless communication range of the sensor. Given the constrained energy available on a data mule and the energy consumption of its communications and movement operations, a data mule may be prevented from visiting every deployed sensor in a tour. We formulate the tour planning of a data mule collecting sensor data in UWSNs as an energy-constrained bi-objective optimization problem termed the Underwater Data Muling Problem (UDMP). UDMP has the two conflicting objectives of minimizing the length of a tour and maximizing the number of sensors contacted, while satisfying the energy constraint of the data mule at all times. We design an approximation algorithm to solve one special case of this NP-hard problem, which computes a set of Pareto-efficient solutions addressing the tradeoff between the two optimization objectives so as to make proper tour planning. Simulation results validate the effectiveness of this algorithm..</description><subject>Approximation algorithms</subject><subject>Batteries</subject><subject>data muling</subject><subject>Energy consumption</subject><subject>heuristic algorithm</subject><subject>Planning</subject><subject>Robot sensing systems</subject><subject>tour planning</subject><subject>underwater wireless sensor networks</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><issn>2155-6806</issn><issn>2155-6814</issn><isbn>9781424474882</isbn><isbn>1424474884</isbn><isbn>9781424474905</isbn><isbn>1424474892</isbn><isbn>9781424474899</isbn><isbn>1424474906</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkNtKAzEYhOMJLHUfQLzJC2zNYfMnuSylHqAiWL0u2ey_JbXNSrK19O1dsIhzM8w3MBdDyC1nE86ZvX-ZLpcTwYaoACom4IwUVhteiarSlWXqnIwEV6qEgV3874wRl38dg2tS5Lxhg5TQ0sCIvM0jpvWx9F3MfXIhYkPrUHb1Bn0fvpE2rnd0t9-GuKYh0n1sMB1cj4keQsIt5kwzxtwlGrE_dOkz35Cr1m0zFicfk4-H-fvsqVy8Pj7PpovSc8OhhKbVIE3ta2m9MEJ6raysG8VAY10JblqwCKilEMw5J1scgHO89RZaIeWY3P3uBkRcfaWwc-m4Oj0kfwAQjlZl</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Ke Li</creator><creator>Chien-Chung Shen</creator><creator>Guaning Chen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201011</creationdate><title>Energy-constrained bi-objective data muling in underwater wireless sensor networks</title><author>Ke Li ; Chien-Chung Shen ; Guaning Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1816-6df7638bcb39c2823c7593bd5067eb4218f69e6e73220aaa3fef69aa1fc96f233</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation algorithms</topic><topic>Batteries</topic><topic>data muling</topic><topic>Energy consumption</topic><topic>heuristic algorithm</topic><topic>Planning</topic><topic>Robot sensing systems</topic><topic>tour planning</topic><topic>underwater wireless sensor networks</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Ke Li</creatorcontrib><creatorcontrib>Chien-Chung Shen</creatorcontrib><creatorcontrib>Guaning Chen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ke Li</au><au>Chien-Chung Shen</au><au>Guaning Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Energy-constrained bi-objective data muling in underwater wireless sensor networks</atitle><btitle>The 7th IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2010)</btitle><stitle>MASS</stitle><date>2010-11</date><risdate>2010</risdate><spage>332</spage><epage>341</epage><pages>332-341</pages><issn>2155-6806</issn><eissn>2155-6814</eissn><isbn>9781424474882</isbn><isbn>1424474884</isbn><eisbn>9781424474905</eisbn><eisbn>1424474892</eisbn><eisbn>9781424474899</eisbn><eisbn>1424474906</eisbn><abstract>For underwater wireless sensor networks (UWSNs), data muling is an effective approach to extending network coverage and lifetime. Sensor data are collected when a mobile data mule travels within the wireless communication range of the sensor. Given the constrained energy available on a data mule and the energy consumption of its communications and movement operations, a data mule may be prevented from visiting every deployed sensor in a tour. We formulate the tour planning of a data mule collecting sensor data in UWSNs as an energy-constrained bi-objective optimization problem termed the Underwater Data Muling Problem (UDMP). UDMP has the two conflicting objectives of minimizing the length of a tour and maximizing the number of sensors contacted, while satisfying the energy constraint of the data mule at all times. We design an approximation algorithm to solve one special case of this NP-hard problem, which computes a set of Pareto-efficient solutions addressing the tradeoff between the two optimization objectives so as to make proper tour planning. Simulation results validate the effectiveness of this algorithm..</abstract><pub>IEEE</pub><doi>10.1109/MASS.2010.5664026</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2155-6806 |
ispartof | The 7th IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2010), 2010, p.332-341 |
issn | 2155-6806 2155-6814 |
language | eng |
recordid | cdi_ieee_primary_5664026 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Approximation algorithms Batteries data muling Energy consumption heuristic algorithm Planning Robot sensing systems tour planning underwater wireless sensor networks Wireless communication Wireless sensor networks |
title | Energy-constrained bi-objective data muling in underwater wireless sensor networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A35%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Energy-constrained%20bi-objective%20data%20muling%20in%20underwater%20wireless%20sensor%20networks&rft.btitle=The%207th%20IEEE%20International%20Conference%20on%20Mobile%20Ad-hoc%20and%20Sensor%20Systems%20(IEEE%20MASS%202010)&rft.au=Ke%20Li&rft.date=2010-11&rft.spage=332&rft.epage=341&rft.pages=332-341&rft.issn=2155-6806&rft.eissn=2155-6814&rft.isbn=9781424474882&rft.isbn_list=1424474884&rft_id=info:doi/10.1109/MASS.2010.5664026&rft_dat=%3Cieee_6IE%3E5664026%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424474905&rft.eisbn_list=1424474892&rft.eisbn_list=9781424474899&rft.eisbn_list=1424474906&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5664026&rfr_iscdi=true |