Energy-constrained bi-objective data muling in underwater wireless sensor networks

For underwater wireless sensor networks (UWSNs), data muling is an effective approach to extending network coverage and lifetime. Sensor data are collected when a mobile data mule travels within the wireless communication range of the sensor. Given the constrained energy available on a data mule and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ke Li, Chien-Chung Shen, Guaning Chen
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 341
container_issue
container_start_page 332
container_title
container_volume
creator Ke Li
Chien-Chung Shen
Guaning Chen
description For underwater wireless sensor networks (UWSNs), data muling is an effective approach to extending network coverage and lifetime. Sensor data are collected when a mobile data mule travels within the wireless communication range of the sensor. Given the constrained energy available on a data mule and the energy consumption of its communications and movement operations, a data mule may be prevented from visiting every deployed sensor in a tour. We formulate the tour planning of a data mule collecting sensor data in UWSNs as an energy-constrained bi-objective optimization problem termed the Underwater Data Muling Problem (UDMP). UDMP has the two conflicting objectives of minimizing the length of a tour and maximizing the number of sensors contacted, while satisfying the energy constraint of the data mule at all times. We design an approximation algorithm to solve one special case of this NP-hard problem, which computes a set of Pareto-efficient solutions addressing the tradeoff between the two optimization objectives so as to make proper tour planning. Simulation results validate the effectiveness of this algorithm..
doi_str_mv 10.1109/MASS.2010.5664026
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5664026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5664026</ieee_id><sourcerecordid>5664026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1816-6df7638bcb39c2823c7593bd5067eb4218f69e6e73220aaa3fef69aa1fc96f233</originalsourceid><addsrcrecordid>eNpNkNtKAzEYhOMJLHUfQLzJC2zNYfMnuSylHqAiWL0u2ey_JbXNSrK19O1dsIhzM8w3MBdDyC1nE86ZvX-ZLpcTwYaoACom4IwUVhteiarSlWXqnIwEV6qEgV3874wRl38dg2tS5Lxhg5TQ0sCIvM0jpvWx9F3MfXIhYkPrUHb1Bn0fvpE2rnd0t9-GuKYh0n1sMB1cj4keQsIt5kwzxtwlGrE_dOkz35Cr1m0zFicfk4-H-fvsqVy8Pj7PpovSc8OhhKbVIE3ta2m9MEJ6raysG8VAY10JblqwCKilEMw5J1scgHO89RZaIeWY3P3uBkRcfaWwc-m4Oj0kfwAQjlZl</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Energy-constrained bi-objective data muling in underwater wireless sensor networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ke Li ; Chien-Chung Shen ; Guaning Chen</creator><creatorcontrib>Ke Li ; Chien-Chung Shen ; Guaning Chen</creatorcontrib><description>For underwater wireless sensor networks (UWSNs), data muling is an effective approach to extending network coverage and lifetime. Sensor data are collected when a mobile data mule travels within the wireless communication range of the sensor. Given the constrained energy available on a data mule and the energy consumption of its communications and movement operations, a data mule may be prevented from visiting every deployed sensor in a tour. We formulate the tour planning of a data mule collecting sensor data in UWSNs as an energy-constrained bi-objective optimization problem termed the Underwater Data Muling Problem (UDMP). UDMP has the two conflicting objectives of minimizing the length of a tour and maximizing the number of sensors contacted, while satisfying the energy constraint of the data mule at all times. We design an approximation algorithm to solve one special case of this NP-hard problem, which computes a set of Pareto-efficient solutions addressing the tradeoff between the two optimization objectives so as to make proper tour planning. Simulation results validate the effectiveness of this algorithm..</description><identifier>ISSN: 2155-6806</identifier><identifier>ISBN: 9781424474882</identifier><identifier>ISBN: 1424474884</identifier><identifier>EISSN: 2155-6814</identifier><identifier>EISBN: 9781424474905</identifier><identifier>EISBN: 1424474892</identifier><identifier>EISBN: 9781424474899</identifier><identifier>EISBN: 1424474906</identifier><identifier>DOI: 10.1109/MASS.2010.5664026</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Batteries ; data muling ; Energy consumption ; heuristic algorithm ; Planning ; Robot sensing systems ; tour planning ; underwater wireless sensor networks ; Wireless communication ; Wireless sensor networks</subject><ispartof>The 7th IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2010), 2010, p.332-341</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1816-6df7638bcb39c2823c7593bd5067eb4218f69e6e73220aaa3fef69aa1fc96f233</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5664026$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5664026$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ke Li</creatorcontrib><creatorcontrib>Chien-Chung Shen</creatorcontrib><creatorcontrib>Guaning Chen</creatorcontrib><title>Energy-constrained bi-objective data muling in underwater wireless sensor networks</title><title>The 7th IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2010)</title><addtitle>MASS</addtitle><description>For underwater wireless sensor networks (UWSNs), data muling is an effective approach to extending network coverage and lifetime. Sensor data are collected when a mobile data mule travels within the wireless communication range of the sensor. Given the constrained energy available on a data mule and the energy consumption of its communications and movement operations, a data mule may be prevented from visiting every deployed sensor in a tour. We formulate the tour planning of a data mule collecting sensor data in UWSNs as an energy-constrained bi-objective optimization problem termed the Underwater Data Muling Problem (UDMP). UDMP has the two conflicting objectives of minimizing the length of a tour and maximizing the number of sensors contacted, while satisfying the energy constraint of the data mule at all times. We design an approximation algorithm to solve one special case of this NP-hard problem, which computes a set of Pareto-efficient solutions addressing the tradeoff between the two optimization objectives so as to make proper tour planning. Simulation results validate the effectiveness of this algorithm..</description><subject>Approximation algorithms</subject><subject>Batteries</subject><subject>data muling</subject><subject>Energy consumption</subject><subject>heuristic algorithm</subject><subject>Planning</subject><subject>Robot sensing systems</subject><subject>tour planning</subject><subject>underwater wireless sensor networks</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><issn>2155-6806</issn><issn>2155-6814</issn><isbn>9781424474882</isbn><isbn>1424474884</isbn><isbn>9781424474905</isbn><isbn>1424474892</isbn><isbn>9781424474899</isbn><isbn>1424474906</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkNtKAzEYhOMJLHUfQLzJC2zNYfMnuSylHqAiWL0u2ey_JbXNSrK19O1dsIhzM8w3MBdDyC1nE86ZvX-ZLpcTwYaoACom4IwUVhteiarSlWXqnIwEV6qEgV3874wRl38dg2tS5Lxhg5TQ0sCIvM0jpvWx9F3MfXIhYkPrUHb1Bn0fvpE2rnd0t9-GuKYh0n1sMB1cj4keQsIt5kwzxtwlGrE_dOkz35Cr1m0zFicfk4-H-fvsqVy8Pj7PpovSc8OhhKbVIE3ta2m9MEJ6raysG8VAY10JblqwCKilEMw5J1scgHO89RZaIeWY3P3uBkRcfaWwc-m4Oj0kfwAQjlZl</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Ke Li</creator><creator>Chien-Chung Shen</creator><creator>Guaning Chen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201011</creationdate><title>Energy-constrained bi-objective data muling in underwater wireless sensor networks</title><author>Ke Li ; Chien-Chung Shen ; Guaning Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1816-6df7638bcb39c2823c7593bd5067eb4218f69e6e73220aaa3fef69aa1fc96f233</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation algorithms</topic><topic>Batteries</topic><topic>data muling</topic><topic>Energy consumption</topic><topic>heuristic algorithm</topic><topic>Planning</topic><topic>Robot sensing systems</topic><topic>tour planning</topic><topic>underwater wireless sensor networks</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Ke Li</creatorcontrib><creatorcontrib>Chien-Chung Shen</creatorcontrib><creatorcontrib>Guaning Chen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ke Li</au><au>Chien-Chung Shen</au><au>Guaning Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Energy-constrained bi-objective data muling in underwater wireless sensor networks</atitle><btitle>The 7th IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2010)</btitle><stitle>MASS</stitle><date>2010-11</date><risdate>2010</risdate><spage>332</spage><epage>341</epage><pages>332-341</pages><issn>2155-6806</issn><eissn>2155-6814</eissn><isbn>9781424474882</isbn><isbn>1424474884</isbn><eisbn>9781424474905</eisbn><eisbn>1424474892</eisbn><eisbn>9781424474899</eisbn><eisbn>1424474906</eisbn><abstract>For underwater wireless sensor networks (UWSNs), data muling is an effective approach to extending network coverage and lifetime. Sensor data are collected when a mobile data mule travels within the wireless communication range of the sensor. Given the constrained energy available on a data mule and the energy consumption of its communications and movement operations, a data mule may be prevented from visiting every deployed sensor in a tour. We formulate the tour planning of a data mule collecting sensor data in UWSNs as an energy-constrained bi-objective optimization problem termed the Underwater Data Muling Problem (UDMP). UDMP has the two conflicting objectives of minimizing the length of a tour and maximizing the number of sensors contacted, while satisfying the energy constraint of the data mule at all times. We design an approximation algorithm to solve one special case of this NP-hard problem, which computes a set of Pareto-efficient solutions addressing the tradeoff between the two optimization objectives so as to make proper tour planning. Simulation results validate the effectiveness of this algorithm..</abstract><pub>IEEE</pub><doi>10.1109/MASS.2010.5664026</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2155-6806
ispartof The 7th IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2010), 2010, p.332-341
issn 2155-6806
2155-6814
language eng
recordid cdi_ieee_primary_5664026
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation algorithms
Batteries
data muling
Energy consumption
heuristic algorithm
Planning
Robot sensing systems
tour planning
underwater wireless sensor networks
Wireless communication
Wireless sensor networks
title Energy-constrained bi-objective data muling in underwater wireless sensor networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A35%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Energy-constrained%20bi-objective%20data%20muling%20in%20underwater%20wireless%20sensor%20networks&rft.btitle=The%207th%20IEEE%20International%20Conference%20on%20Mobile%20Ad-hoc%20and%20Sensor%20Systems%20(IEEE%20MASS%202010)&rft.au=Ke%20Li&rft.date=2010-11&rft.spage=332&rft.epage=341&rft.pages=332-341&rft.issn=2155-6806&rft.eissn=2155-6814&rft.isbn=9781424474882&rft.isbn_list=1424474884&rft_id=info:doi/10.1109/MASS.2010.5664026&rft_dat=%3Cieee_6IE%3E5664026%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424474905&rft.eisbn_list=1424474892&rft.eisbn_list=9781424474899&rft.eisbn_list=1424474906&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5664026&rfr_iscdi=true