Pixel-based data fusion for a better object detection in automotive applications

The proposed technique addresses a fusion method of two imaging sensors on pixel-level. The fused image will provide a scene representation which is robust against illumination changes and different weather conditions. Thus, the combination of the advantages of each camera will extend the capabiliti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Thomanek, J, Lietz, H, Wanielik, G
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 390
container_issue
container_start_page 385
container_title
container_volume 2
creator Thomanek, J
Lietz, H
Wanielik, G
description The proposed technique addresses a fusion method of two imaging sensors on pixel-level. The fused image will provide a scene representation which is robust against illumination changes and different weather conditions. Thus, the combination of the advantages of each camera will extend the capabilities for many computer vision applications, such as video surveillance and automatic object recognition. The presented pixel-based fusion technique is examined on the images of two sensors, a far-infrared (FIR) light camera and a visible light camera which are built-in a vehicle. The sensor images are first decomposed using the Dyadic Wavelet Transform. The transformed data are combined in the wavelet domain controlled by a "goal-oriented" fusion rule. Finally, the fused wavelet representation image will be processed by a pedestrian detection system.
doi_str_mv 10.1109/ICICISYS.2010.5658327
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5658327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5658327</ieee_id><sourcerecordid>5658327</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-e6c98bee3d539e61673a8e54721844317820ebd7a521d3f247402f629a379a4f3</originalsourceid><addsrcrecordid>eNo1kN1KAzEQhSMiqHWfQIS8wNb8bpJLWdQWChbaG6_K7GYCKdvuspuKvr0p1pmLj3POMBeHkCfO5pwz97ys824-N3PBsqUrbaUwV-SeK6FUVkpck8IZ-6-FvSXFNO1Znnytrbkj63X8xq5sYEJPPSSg4TTF_khDP1KgDaaEI-2bPbaJekwZ5zQeKZxSf-hT_EIKw9DFFs7J9EBuAnQTFhfOyPbtdVsvytXH-7J-WZXRsVRi1TrbIEqvpcOKV0aCRa2M4FYpyY0VDBtvQAvuZRDKKCZCJRxI40AFOSOPf28jIu6GMR5g_NldOpC_blZQvw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Pixel-based data fusion for a better object detection in automotive applications</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Thomanek, J ; Lietz, H ; Wanielik, G</creator><creatorcontrib>Thomanek, J ; Lietz, H ; Wanielik, G</creatorcontrib><description>The proposed technique addresses a fusion method of two imaging sensors on pixel-level. The fused image will provide a scene representation which is robust against illumination changes and different weather conditions. Thus, the combination of the advantages of each camera will extend the capabilities for many computer vision applications, such as video surveillance and automatic object recognition. The presented pixel-based fusion technique is examined on the images of two sensors, a far-infrared (FIR) light camera and a visible light camera which are built-in a vehicle. The sensor images are first decomposed using the Dyadic Wavelet Transform. The transformed data are combined in the wavelet domain controlled by a "goal-oriented" fusion rule. Finally, the fused wavelet representation image will be processed by a pedestrian detection system.</description><identifier>ISBN: 9781424465828</identifier><identifier>ISBN: 1424465826</identifier><identifier>EISBN: 1424465842</identifier><identifier>EISBN: 1424465850</identifier><identifier>EISBN: 9781424465842</identifier><identifier>EISBN: 9781424465859</identifier><identifier>DOI: 10.1109/ICICISYS.2010.5658327</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bioinformatics ; Classification algorithms ; Feature extraction ; image registration ; Image resolution ; pedestrian recognition ; Pixel ; pixel-based data fusion ; Support vector machine classification ; Visualization ; wavelet transform</subject><ispartof>2010 IEEE International Conference on Intelligent Computing and Intelligent Systems, 2010, Vol.2, p.385-390</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5658327$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5658327$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Thomanek, J</creatorcontrib><creatorcontrib>Lietz, H</creatorcontrib><creatorcontrib>Wanielik, G</creatorcontrib><title>Pixel-based data fusion for a better object detection in automotive applications</title><title>2010 IEEE International Conference on Intelligent Computing and Intelligent Systems</title><addtitle>ICICISYS</addtitle><description>The proposed technique addresses a fusion method of two imaging sensors on pixel-level. The fused image will provide a scene representation which is robust against illumination changes and different weather conditions. Thus, the combination of the advantages of each camera will extend the capabilities for many computer vision applications, such as video surveillance and automatic object recognition. The presented pixel-based fusion technique is examined on the images of two sensors, a far-infrared (FIR) light camera and a visible light camera which are built-in a vehicle. The sensor images are first decomposed using the Dyadic Wavelet Transform. The transformed data are combined in the wavelet domain controlled by a "goal-oriented" fusion rule. Finally, the fused wavelet representation image will be processed by a pedestrian detection system.</description><subject>Bioinformatics</subject><subject>Classification algorithms</subject><subject>Feature extraction</subject><subject>image registration</subject><subject>Image resolution</subject><subject>pedestrian recognition</subject><subject>Pixel</subject><subject>pixel-based data fusion</subject><subject>Support vector machine classification</subject><subject>Visualization</subject><subject>wavelet transform</subject><isbn>9781424465828</isbn><isbn>1424465826</isbn><isbn>1424465842</isbn><isbn>1424465850</isbn><isbn>9781424465842</isbn><isbn>9781424465859</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kN1KAzEQhSMiqHWfQIS8wNb8bpJLWdQWChbaG6_K7GYCKdvuspuKvr0p1pmLj3POMBeHkCfO5pwz97ys824-N3PBsqUrbaUwV-SeK6FUVkpck8IZ-6-FvSXFNO1Znnytrbkj63X8xq5sYEJPPSSg4TTF_khDP1KgDaaEI-2bPbaJekwZ5zQeKZxSf-hT_EIKw9DFFs7J9EBuAnQTFhfOyPbtdVsvytXH-7J-WZXRsVRi1TrbIEqvpcOKV0aCRa2M4FYpyY0VDBtvQAvuZRDKKCZCJRxI40AFOSOPf28jIu6GMR5g_NldOpC_blZQvw</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Thomanek, J</creator><creator>Lietz, H</creator><creator>Wanielik, G</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>Pixel-based data fusion for a better object detection in automotive applications</title><author>Thomanek, J ; Lietz, H ; Wanielik, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-e6c98bee3d539e61673a8e54721844317820ebd7a521d3f247402f629a379a4f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bioinformatics</topic><topic>Classification algorithms</topic><topic>Feature extraction</topic><topic>image registration</topic><topic>Image resolution</topic><topic>pedestrian recognition</topic><topic>Pixel</topic><topic>pixel-based data fusion</topic><topic>Support vector machine classification</topic><topic>Visualization</topic><topic>wavelet transform</topic><toplevel>online_resources</toplevel><creatorcontrib>Thomanek, J</creatorcontrib><creatorcontrib>Lietz, H</creatorcontrib><creatorcontrib>Wanielik, G</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thomanek, J</au><au>Lietz, H</au><au>Wanielik, G</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Pixel-based data fusion for a better object detection in automotive applications</atitle><btitle>2010 IEEE International Conference on Intelligent Computing and Intelligent Systems</btitle><stitle>ICICISYS</stitle><date>2010-10</date><risdate>2010</risdate><volume>2</volume><spage>385</spage><epage>390</epage><pages>385-390</pages><isbn>9781424465828</isbn><isbn>1424465826</isbn><eisbn>1424465842</eisbn><eisbn>1424465850</eisbn><eisbn>9781424465842</eisbn><eisbn>9781424465859</eisbn><abstract>The proposed technique addresses a fusion method of two imaging sensors on pixel-level. The fused image will provide a scene representation which is robust against illumination changes and different weather conditions. Thus, the combination of the advantages of each camera will extend the capabilities for many computer vision applications, such as video surveillance and automatic object recognition. The presented pixel-based fusion technique is examined on the images of two sensors, a far-infrared (FIR) light camera and a visible light camera which are built-in a vehicle. The sensor images are first decomposed using the Dyadic Wavelet Transform. The transformed data are combined in the wavelet domain controlled by a "goal-oriented" fusion rule. Finally, the fused wavelet representation image will be processed by a pedestrian detection system.</abstract><pub>IEEE</pub><doi>10.1109/ICICISYS.2010.5658327</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424465828
ispartof 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems, 2010, Vol.2, p.385-390
issn
language eng
recordid cdi_ieee_primary_5658327
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bioinformatics
Classification algorithms
Feature extraction
image registration
Image resolution
pedestrian recognition
Pixel
pixel-based data fusion
Support vector machine classification
Visualization
wavelet transform
title Pixel-based data fusion for a better object detection in automotive applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Pixel-based%20data%20fusion%20for%20a%20better%20object%20detection%20in%20automotive%20applications&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Intelligent%20Computing%20and%20Intelligent%20Systems&rft.au=Thomanek,%20J&rft.date=2010-10&rft.volume=2&rft.spage=385&rft.epage=390&rft.pages=385-390&rft.isbn=9781424465828&rft.isbn_list=1424465826&rft_id=info:doi/10.1109/ICICISYS.2010.5658327&rft_dat=%3Cieee_6IE%3E5658327%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424465842&rft.eisbn_list=1424465850&rft.eisbn_list=9781424465842&rft.eisbn_list=9781424465859&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5658327&rfr_iscdi=true