Using AWPSO to Solve the Data Scarcity Problem in Wind Speed Prediction by Artificial Neural Networks

A new strategy in wind speed prediction based on adaptive weighted particle swarm optimization combined with artificial neural networks was proposed. Regarding the data gathering, sometimes it is difficult to provide the neural network with sufficient data to be trained efficiently. In order to solv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fesharaki, M, Shafiabady, N, Fesharaki, M A, Ahmadi, S
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52
container_issue
container_start_page 49
container_title
container_volume 3
creator Fesharaki, M
Shafiabady, N
Fesharaki, M A
Ahmadi, S
description A new strategy in wind speed prediction based on adaptive weighted particle swarm optimization combined with artificial neural networks was proposed. Regarding the data gathering, sometimes it is difficult to provide the neural network with sufficient data to be trained efficiently. In order to solve this problem Adaptive weighed particle swarm optimization is used to increase the data the produced data is fed to a multilayered feed forward neural network to predict the future wind speed. This method has lead to good estimated wind speed accuracy and good prediction performance.
doi_str_mv 10.1109/AICI.2010.251
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5655134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5655134</ieee_id><sourcerecordid>5655134</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-12fe5666a62e6d6a88f3552b5d35eeccb52a4a8cb56bbd93e305f19a2239f2c03</originalsourceid><addsrcrecordid>eNotjEtPwkAURicxJAqydOXm_gFwXndslw0-aEKEpBiWZDq91dHSkumo4d9bH9_m5DuLw9iV4HMheHqT5Yt8LvlwJYozNhZaap1oJfWIjX98qm4FynM27fs3PgwTbnRywei59-0LZLtNsYbYQdE1nwTxleDORguFs8H5eIJN6MqGDuBb2Pm2guJIVA2WKu-i71ooT5CF6GvvvG3giT7CL-JXF977SzaqbdPT9J8Ttn243y6Ws9X6MV9kq5lPeZwJWRMaY6yRZCpjk6RWiLLESiGRcyVKq20y0JRllSpSHGuRWilVWkvH1YRd_2U9Ee2PwR9sOO3RIAql1TcOg1Uc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using AWPSO to Solve the Data Scarcity Problem in Wind Speed Prediction by Artificial Neural Networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fesharaki, M ; Shafiabady, N ; Fesharaki, M A ; Ahmadi, S</creator><creatorcontrib>Fesharaki, M ; Shafiabady, N ; Fesharaki, M A ; Ahmadi, S</creatorcontrib><description>A new strategy in wind speed prediction based on adaptive weighted particle swarm optimization combined with artificial neural networks was proposed. Regarding the data gathering, sometimes it is difficult to provide the neural network with sufficient data to be trained efficiently. In order to solve this problem Adaptive weighed particle swarm optimization is used to increase the data the produced data is fed to a multilayered feed forward neural network to predict the future wind speed. This method has lead to good estimated wind speed accuracy and good prediction performance.</description><identifier>ISBN: 1424484324</identifier><identifier>ISBN: 9781424484324</identifier><identifier>DOI: 10.1109/AICI.2010.251</identifier><identifier>LCCN: 2010937152</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive Weighted Particle Swarm Optimization ; Artificial neural networks ; Data Scarcity ; Multilayered Feed Forward Neural Network ; Neurons ; Particle swarm optimization ; Prediction ; Simulation ; Wind power generation ; Wind speed ; Wind turbines</subject><ispartof>2010 International Conference on Artificial Intelligence and Computational Intelligence, 2010, Vol.3, p.49-52</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5655134$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5655134$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fesharaki, M</creatorcontrib><creatorcontrib>Shafiabady, N</creatorcontrib><creatorcontrib>Fesharaki, M A</creatorcontrib><creatorcontrib>Ahmadi, S</creatorcontrib><title>Using AWPSO to Solve the Data Scarcity Problem in Wind Speed Prediction by Artificial Neural Networks</title><title>2010 International Conference on Artificial Intelligence and Computational Intelligence</title><addtitle>AICI</addtitle><description>A new strategy in wind speed prediction based on adaptive weighted particle swarm optimization combined with artificial neural networks was proposed. Regarding the data gathering, sometimes it is difficult to provide the neural network with sufficient data to be trained efficiently. In order to solve this problem Adaptive weighed particle swarm optimization is used to increase the data the produced data is fed to a multilayered feed forward neural network to predict the future wind speed. This method has lead to good estimated wind speed accuracy and good prediction performance.</description><subject>Adaptive Weighted Particle Swarm Optimization</subject><subject>Artificial neural networks</subject><subject>Data Scarcity</subject><subject>Multilayered Feed Forward Neural Network</subject><subject>Neurons</subject><subject>Particle swarm optimization</subject><subject>Prediction</subject><subject>Simulation</subject><subject>Wind power generation</subject><subject>Wind speed</subject><subject>Wind turbines</subject><isbn>1424484324</isbn><isbn>9781424484324</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjEtPwkAURicxJAqydOXm_gFwXndslw0-aEKEpBiWZDq91dHSkumo4d9bH9_m5DuLw9iV4HMheHqT5Yt8LvlwJYozNhZaap1oJfWIjX98qm4FynM27fs3PgwTbnRywei59-0LZLtNsYbYQdE1nwTxleDORguFs8H5eIJN6MqGDuBb2Pm2guJIVA2WKu-i71ooT5CF6GvvvG3giT7CL-JXF977SzaqbdPT9J8Ttn243y6Ws9X6MV9kq5lPeZwJWRMaY6yRZCpjk6RWiLLESiGRcyVKq20y0JRllSpSHGuRWilVWkvH1YRd_2U9Ee2PwR9sOO3RIAql1TcOg1Uc</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Fesharaki, M</creator><creator>Shafiabady, N</creator><creator>Fesharaki, M A</creator><creator>Ahmadi, S</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>Using AWPSO to Solve the Data Scarcity Problem in Wind Speed Prediction by Artificial Neural Networks</title><author>Fesharaki, M ; Shafiabady, N ; Fesharaki, M A ; Ahmadi, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-12fe5666a62e6d6a88f3552b5d35eeccb52a4a8cb56bbd93e305f19a2239f2c03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptive Weighted Particle Swarm Optimization</topic><topic>Artificial neural networks</topic><topic>Data Scarcity</topic><topic>Multilayered Feed Forward Neural Network</topic><topic>Neurons</topic><topic>Particle swarm optimization</topic><topic>Prediction</topic><topic>Simulation</topic><topic>Wind power generation</topic><topic>Wind speed</topic><topic>Wind turbines</topic><toplevel>online_resources</toplevel><creatorcontrib>Fesharaki, M</creatorcontrib><creatorcontrib>Shafiabady, N</creatorcontrib><creatorcontrib>Fesharaki, M A</creatorcontrib><creatorcontrib>Ahmadi, S</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fesharaki, M</au><au>Shafiabady, N</au><au>Fesharaki, M A</au><au>Ahmadi, S</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using AWPSO to Solve the Data Scarcity Problem in Wind Speed Prediction by Artificial Neural Networks</atitle><btitle>2010 International Conference on Artificial Intelligence and Computational Intelligence</btitle><stitle>AICI</stitle><date>2010-10</date><risdate>2010</risdate><volume>3</volume><spage>49</spage><epage>52</epage><pages>49-52</pages><isbn>1424484324</isbn><isbn>9781424484324</isbn><abstract>A new strategy in wind speed prediction based on adaptive weighted particle swarm optimization combined with artificial neural networks was proposed. Regarding the data gathering, sometimes it is difficult to provide the neural network with sufficient data to be trained efficiently. In order to solve this problem Adaptive weighed particle swarm optimization is used to increase the data the produced data is fed to a multilayered feed forward neural network to predict the future wind speed. This method has lead to good estimated wind speed accuracy and good prediction performance.</abstract><pub>IEEE</pub><doi>10.1109/AICI.2010.251</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424484324
ispartof 2010 International Conference on Artificial Intelligence and Computational Intelligence, 2010, Vol.3, p.49-52
issn
language eng
recordid cdi_ieee_primary_5655134
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive Weighted Particle Swarm Optimization
Artificial neural networks
Data Scarcity
Multilayered Feed Forward Neural Network
Neurons
Particle swarm optimization
Prediction
Simulation
Wind power generation
Wind speed
Wind turbines
title Using AWPSO to Solve the Data Scarcity Problem in Wind Speed Prediction by Artificial Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A57%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20AWPSO%20to%20Solve%20the%20Data%20Scarcity%20Problem%20in%20Wind%20Speed%20Prediction%20by%20Artificial%20Neural%20Networks&rft.btitle=2010%20International%20Conference%20on%20Artificial%20Intelligence%20and%20Computational%20Intelligence&rft.au=Fesharaki,%20M&rft.date=2010-10&rft.volume=3&rft.spage=49&rft.epage=52&rft.pages=49-52&rft.isbn=1424484324&rft.isbn_list=9781424484324&rft_id=info:doi/10.1109/AICI.2010.251&rft_dat=%3Cieee_6IE%3E5655134%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5655134&rfr_iscdi=true