Visual Analytics Law Enforcement Toolkit

We present VALET, a Visual Analytics Law Enforcement Toolkit for analyzing spatiotemporal law enforcement data. VALET provides users with a suite of analytical tools coupled with an interactive visual interface for data exploration and analysis. This system includes linked views and interactive disp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Malik, A, Maciejewski, R, Collins, T F, Ebert, D S
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 228
container_issue
container_start_page 222
container_title
container_volume
creator Malik, A
Maciejewski, R
Collins, T F
Ebert, D S
description We present VALET, a Visual Analytics Law Enforcement Toolkit for analyzing spatiotemporal law enforcement data. VALET provides users with a suite of analytical tools coupled with an interactive visual interface for data exploration and analysis. This system includes linked views and interactive displays that spatiotemporally model criminal, traffic and civil (CTC) incidents and allows officials to observe patterns and quickly identify regions with higher probabilities of activity. Our toolkit provides analysts with the ability to visualize different types of data sets (census data, daily weather reports, zoning tracts, prominent calendar dates, etc.) that provide an insight into correlations among CTC incidents and spatial demographics. In the spatial domain, we have implemented a kernel density estimation mapping technique that creates a color map of spatially distributed CTC events that allows analysts to quickly find and identify areas with unusually large activity levels. In the temporal domain, reports can be aggregated by day, week, month or year, allowing the analysts to visualize the CTC activities spatially over a period of time. Furthermore, we have incorporated temporal prediction algorithms to forecast future CTC incident levels within a 95% confidence interval. Such predictions aid law enforcement officials in understanding how hotspots may grow in the future in order to judiciously allocate resources and take preventive measures. Our system has been developed using actual law enforcement data and is currently being evaluated and refined by a consortium of law enforcement agencies.
doi_str_mv 10.1109/THS.2010.5655057
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5655057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5655057</ieee_id><sourcerecordid>5655057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1797-580b9c280641c2aa388fb656223354cc1f704fb768a2a254a92e5ace47deee43</originalsourceid><addsrcrecordid>eNpFz81Lw0AQBfAVEdTau-AlRy-ps7OzHzmWUq0Q8GDwWibrLqymiWQj0v_egAXf5fG7PHhC3EpYSQnVQ7N7XSHM0kZr0PZMXEtCIgPk6Pwf1lyKZc4fMEejVUBX4v4t5W_uinXP3XFKPhc1_xTbPg6jD4fQT0UzDN1nmm7EReQuh-WpF6J53DabXVm_PD1v1nXppa1sqR20lUcHhqRHZuVcbI02iEpp8l5GCxRbaxwjoyauMGj2gex7CIHUQtz9zaaZ-68xHXg87k_H1C99CT-z</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Visual Analytics Law Enforcement Toolkit</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Malik, A ; Maciejewski, R ; Collins, T F ; Ebert, D S</creator><creatorcontrib>Malik, A ; Maciejewski, R ; Collins, T F ; Ebert, D S</creatorcontrib><description>We present VALET, a Visual Analytics Law Enforcement Toolkit for analyzing spatiotemporal law enforcement data. VALET provides users with a suite of analytical tools coupled with an interactive visual interface for data exploration and analysis. This system includes linked views and interactive displays that spatiotemporally model criminal, traffic and civil (CTC) incidents and allows officials to observe patterns and quickly identify regions with higher probabilities of activity. Our toolkit provides analysts with the ability to visualize different types of data sets (census data, daily weather reports, zoning tracts, prominent calendar dates, etc.) that provide an insight into correlations among CTC incidents and spatial demographics. In the spatial domain, we have implemented a kernel density estimation mapping technique that creates a color map of spatially distributed CTC events that allows analysts to quickly find and identify areas with unusually large activity levels. In the temporal domain, reports can be aggregated by day, week, month or year, allowing the analysts to visualize the CTC activities spatially over a period of time. Furthermore, we have incorporated temporal prediction algorithms to forecast future CTC incident levels within a 95% confidence interval. Such predictions aid law enforcement officials in understanding how hotspots may grow in the future in order to judiciously allocate resources and take preventive measures. Our system has been developed using actual law enforcement data and is currently being evaluated and refined by a consortium of law enforcement agencies.</description><identifier>ISBN: 1424460476</identifier><identifier>ISBN: 9781424460472</identifier><identifier>EISBN: 1424460484</identifier><identifier>EISBN: 9781424460465</identifier><identifier>EISBN: 1424460468</identifier><identifier>EISBN: 9781424460489</identifier><identifier>DOI: 10.1109/THS.2010.5655057</identifier><language>eng</language><publisher>IEEE</publisher><subject>Calendars ; Correlation ; Data visualization ; Kernel ; Law enforcement ; Time series analysis ; Visual analytics</subject><ispartof>2010 IEEE International Conference on Technologies for Homeland Security (HST), 2010, p.222-228</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1797-580b9c280641c2aa388fb656223354cc1f704fb768a2a254a92e5ace47deee43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5655057$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5655057$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Malik, A</creatorcontrib><creatorcontrib>Maciejewski, R</creatorcontrib><creatorcontrib>Collins, T F</creatorcontrib><creatorcontrib>Ebert, D S</creatorcontrib><title>Visual Analytics Law Enforcement Toolkit</title><title>2010 IEEE International Conference on Technologies for Homeland Security (HST)</title><addtitle>THS</addtitle><description>We present VALET, a Visual Analytics Law Enforcement Toolkit for analyzing spatiotemporal law enforcement data. VALET provides users with a suite of analytical tools coupled with an interactive visual interface for data exploration and analysis. This system includes linked views and interactive displays that spatiotemporally model criminal, traffic and civil (CTC) incidents and allows officials to observe patterns and quickly identify regions with higher probabilities of activity. Our toolkit provides analysts with the ability to visualize different types of data sets (census data, daily weather reports, zoning tracts, prominent calendar dates, etc.) that provide an insight into correlations among CTC incidents and spatial demographics. In the spatial domain, we have implemented a kernel density estimation mapping technique that creates a color map of spatially distributed CTC events that allows analysts to quickly find and identify areas with unusually large activity levels. In the temporal domain, reports can be aggregated by day, week, month or year, allowing the analysts to visualize the CTC activities spatially over a period of time. Furthermore, we have incorporated temporal prediction algorithms to forecast future CTC incident levels within a 95% confidence interval. Such predictions aid law enforcement officials in understanding how hotspots may grow in the future in order to judiciously allocate resources and take preventive measures. Our system has been developed using actual law enforcement data and is currently being evaluated and refined by a consortium of law enforcement agencies.</description><subject>Calendars</subject><subject>Correlation</subject><subject>Data visualization</subject><subject>Kernel</subject><subject>Law enforcement</subject><subject>Time series analysis</subject><subject>Visual analytics</subject><isbn>1424460476</isbn><isbn>9781424460472</isbn><isbn>1424460484</isbn><isbn>9781424460465</isbn><isbn>1424460468</isbn><isbn>9781424460489</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFz81Lw0AQBfAVEdTau-AlRy-ps7OzHzmWUq0Q8GDwWibrLqymiWQj0v_egAXf5fG7PHhC3EpYSQnVQ7N7XSHM0kZr0PZMXEtCIgPk6Pwf1lyKZc4fMEejVUBX4v4t5W_uinXP3XFKPhc1_xTbPg6jD4fQT0UzDN1nmm7EReQuh-WpF6J53DabXVm_PD1v1nXppa1sqR20lUcHhqRHZuVcbI02iEpp8l5GCxRbaxwjoyauMGj2gex7CIHUQtz9zaaZ-68xHXg87k_H1C99CT-z</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Malik, A</creator><creator>Maciejewski, R</creator><creator>Collins, T F</creator><creator>Ebert, D S</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201011</creationdate><title>Visual Analytics Law Enforcement Toolkit</title><author>Malik, A ; Maciejewski, R ; Collins, T F ; Ebert, D S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1797-580b9c280641c2aa388fb656223354cc1f704fb768a2a254a92e5ace47deee43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Calendars</topic><topic>Correlation</topic><topic>Data visualization</topic><topic>Kernel</topic><topic>Law enforcement</topic><topic>Time series analysis</topic><topic>Visual analytics</topic><toplevel>online_resources</toplevel><creatorcontrib>Malik, A</creatorcontrib><creatorcontrib>Maciejewski, R</creatorcontrib><creatorcontrib>Collins, T F</creatorcontrib><creatorcontrib>Ebert, D S</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Malik, A</au><au>Maciejewski, R</au><au>Collins, T F</au><au>Ebert, D S</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Visual Analytics Law Enforcement Toolkit</atitle><btitle>2010 IEEE International Conference on Technologies for Homeland Security (HST)</btitle><stitle>THS</stitle><date>2010-11</date><risdate>2010</risdate><spage>222</spage><epage>228</epage><pages>222-228</pages><isbn>1424460476</isbn><isbn>9781424460472</isbn><eisbn>1424460484</eisbn><eisbn>9781424460465</eisbn><eisbn>1424460468</eisbn><eisbn>9781424460489</eisbn><abstract>We present VALET, a Visual Analytics Law Enforcement Toolkit for analyzing spatiotemporal law enforcement data. VALET provides users with a suite of analytical tools coupled with an interactive visual interface for data exploration and analysis. This system includes linked views and interactive displays that spatiotemporally model criminal, traffic and civil (CTC) incidents and allows officials to observe patterns and quickly identify regions with higher probabilities of activity. Our toolkit provides analysts with the ability to visualize different types of data sets (census data, daily weather reports, zoning tracts, prominent calendar dates, etc.) that provide an insight into correlations among CTC incidents and spatial demographics. In the spatial domain, we have implemented a kernel density estimation mapping technique that creates a color map of spatially distributed CTC events that allows analysts to quickly find and identify areas with unusually large activity levels. In the temporal domain, reports can be aggregated by day, week, month or year, allowing the analysts to visualize the CTC activities spatially over a period of time. Furthermore, we have incorporated temporal prediction algorithms to forecast future CTC incident levels within a 95% confidence interval. Such predictions aid law enforcement officials in understanding how hotspots may grow in the future in order to judiciously allocate resources and take preventive measures. Our system has been developed using actual law enforcement data and is currently being evaluated and refined by a consortium of law enforcement agencies.</abstract><pub>IEEE</pub><doi>10.1109/THS.2010.5655057</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424460476
ispartof 2010 IEEE International Conference on Technologies for Homeland Security (HST), 2010, p.222-228
issn
language eng
recordid cdi_ieee_primary_5655057
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Calendars
Correlation
Data visualization
Kernel
Law enforcement
Time series analysis
Visual analytics
title Visual Analytics Law Enforcement Toolkit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A03%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Visual%20Analytics%20Law%20Enforcement%20Toolkit&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Technologies%20for%20Homeland%20Security%20(HST)&rft.au=Malik,%20A&rft.date=2010-11&rft.spage=222&rft.epage=228&rft.pages=222-228&rft.isbn=1424460476&rft.isbn_list=9781424460472&rft_id=info:doi/10.1109/THS.2010.5655057&rft_dat=%3Cieee_6IE%3E5655057%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424460484&rft.eisbn_list=9781424460465&rft.eisbn_list=1424460468&rft.eisbn_list=9781424460489&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5655057&rfr_iscdi=true