Identifying and learning visual attributes for object recognition

We propose an attribute centric approach for visual object recognition. The attributes of an object are the observable visual properties that help to uniquely describe it. We present methods for identifying and learning these object attributes. To identify suitable object attributes, we process the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kong-Wah Wan, Roy, S
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3896
container_issue
container_start_page 3893
container_title
container_volume
creator Kong-Wah Wan
Roy, S
description We propose an attribute centric approach for visual object recognition. The attributes of an object are the observable visual properties that help to uniquely describe it. We present methods for identifying and learning these object attributes. To identify suitable object attributes, we process the corresponding Wikipedia pages to select terms that not only have high occurrence frequency, the images of these concepts must also be visually consistent. To learn object attributes, we assume prior knowledge of the object class-specific distributions of patches over the attributes, and introduce a novel algorithm that iteratively refines these distributions by a nearest-neighbor attribute classifier. Given an unseen image, its attribute vector is first formed by the distribution of patches over the attributes, and its final class is then determined by the attribute representation. We report efficacy of the proposed framework on an animal data set of ten classes, where the test set consists of images collected from the web.
doi_str_mv 10.1109/ICIP.2010.5653980
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5653980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5653980</ieee_id><sourcerecordid>5653980</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b4c5968ef900a9b97f591e4fcc9a85325e6277c94918f155c9557f61f260b3873</originalsourceid><addsrcrecordid>eNpVkMtKAzEYRuMNHGsfQNzkBabm9k_yL8vgZaCgC12XTJqUlDEjmVTo21uxG1cfhw_O4hByx9mCc4YPXdu9LQQ7IjQg0bAzMkdtuBJKaURlzkklpOG1AYUX_z6hLknFQYhaGcOuyc007Rg7uiSvyLLb-FRiOMS0pTZt6OBtTr_wHae9HagtJcd-X_xEw5jp2O-8KzR7N25TLHFMt-Qq2GHy89POyMfT43v7Uq9en7t2uaoj11DqXjnAxviAjFnsUQdA7lVwDq0BKcA3QmuHCrkJHMAhgA4ND6JhvTRazsj9nzd679dfOX7afFifasgfwsJOdw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Identifying and learning visual attributes for object recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kong-Wah Wan ; Roy, S</creator><creatorcontrib>Kong-Wah Wan ; Roy, S</creatorcontrib><description>We propose an attribute centric approach for visual object recognition. The attributes of an object are the observable visual properties that help to uniquely describe it. We present methods for identifying and learning these object attributes. To identify suitable object attributes, we process the corresponding Wikipedia pages to select terms that not only have high occurrence frequency, the images of these concepts must also be visually consistent. To learn object attributes, we assume prior knowledge of the object class-specific distributions of patches over the attributes, and introduce a novel algorithm that iteratively refines these distributions by a nearest-neighbor attribute classifier. Given an unseen image, its attribute vector is first formed by the distribution of patches over the attributes, and its final class is then determined by the attribute representation. We report efficacy of the proposed framework on an animal data set of ten classes, where the test set consists of images collected from the web.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424479924</identifier><identifier>ISBN: 1424479924</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424479948</identifier><identifier>EISBN: 1424479940</identifier><identifier>EISBN: 1424479932</identifier><identifier>EISBN: 9781424479931</identifier><identifier>DOI: 10.1109/ICIP.2010.5653980</identifier><language>eng</language><publisher>IEEE</publisher><subject>Animals ; Image color analysis ; Internet ; Object recognition ; Support vector machines ; Training ; Visual Attributes ; Visualization</subject><ispartof>2010 IEEE International Conference on Image Processing, 2010, p.3893-3896</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5653980$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5653980$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kong-Wah Wan</creatorcontrib><creatorcontrib>Roy, S</creatorcontrib><title>Identifying and learning visual attributes for object recognition</title><title>2010 IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>We propose an attribute centric approach for visual object recognition. The attributes of an object are the observable visual properties that help to uniquely describe it. We present methods for identifying and learning these object attributes. To identify suitable object attributes, we process the corresponding Wikipedia pages to select terms that not only have high occurrence frequency, the images of these concepts must also be visually consistent. To learn object attributes, we assume prior knowledge of the object class-specific distributions of patches over the attributes, and introduce a novel algorithm that iteratively refines these distributions by a nearest-neighbor attribute classifier. Given an unseen image, its attribute vector is first formed by the distribution of patches over the attributes, and its final class is then determined by the attribute representation. We report efficacy of the proposed framework on an animal data set of ten classes, where the test set consists of images collected from the web.</description><subject>Animals</subject><subject>Image color analysis</subject><subject>Internet</subject><subject>Object recognition</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Visual Attributes</subject><subject>Visualization</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424479924</isbn><isbn>1424479924</isbn><isbn>9781424479948</isbn><isbn>1424479940</isbn><isbn>1424479932</isbn><isbn>9781424479931</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtKAzEYRuMNHGsfQNzkBabm9k_yL8vgZaCgC12XTJqUlDEjmVTo21uxG1cfhw_O4hByx9mCc4YPXdu9LQQ7IjQg0bAzMkdtuBJKaURlzkklpOG1AYUX_z6hLknFQYhaGcOuyc007Rg7uiSvyLLb-FRiOMS0pTZt6OBtTr_wHae9HagtJcd-X_xEw5jp2O-8KzR7N25TLHFMt-Qq2GHy89POyMfT43v7Uq9en7t2uaoj11DqXjnAxviAjFnsUQdA7lVwDq0BKcA3QmuHCrkJHMAhgA4ND6JhvTRazsj9nzd679dfOX7afFifasgfwsJOdw</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Kong-Wah Wan</creator><creator>Roy, S</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201009</creationdate><title>Identifying and learning visual attributes for object recognition</title><author>Kong-Wah Wan ; Roy, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b4c5968ef900a9b97f591e4fcc9a85325e6277c94918f155c9557f61f260b3873</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Image color analysis</topic><topic>Internet</topic><topic>Object recognition</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Visual Attributes</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Kong-Wah Wan</creatorcontrib><creatorcontrib>Roy, S</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kong-Wah Wan</au><au>Roy, S</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Identifying and learning visual attributes for object recognition</atitle><btitle>2010 IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2010-09</date><risdate>2010</risdate><spage>3893</spage><epage>3896</epage><pages>3893-3896</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424479924</isbn><isbn>1424479924</isbn><eisbn>9781424479948</eisbn><eisbn>1424479940</eisbn><eisbn>1424479932</eisbn><eisbn>9781424479931</eisbn><abstract>We propose an attribute centric approach for visual object recognition. The attributes of an object are the observable visual properties that help to uniquely describe it. We present methods for identifying and learning these object attributes. To identify suitable object attributes, we process the corresponding Wikipedia pages to select terms that not only have high occurrence frequency, the images of these concepts must also be visually consistent. To learn object attributes, we assume prior knowledge of the object class-specific distributions of patches over the attributes, and introduce a novel algorithm that iteratively refines these distributions by a nearest-neighbor attribute classifier. Given an unseen image, its attribute vector is first formed by the distribution of patches over the attributes, and its final class is then determined by the attribute representation. We report efficacy of the proposed framework on an animal data set of ten classes, where the test set consists of images collected from the web.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2010.5653980</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2010 IEEE International Conference on Image Processing, 2010, p.3893-3896
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_5653980
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Animals
Image color analysis
Internet
Object recognition
Support vector machines
Training
Visual Attributes
Visualization
title Identifying and learning visual attributes for object recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Identifying%20and%20learning%20visual%20attributes%20for%20object%20recognition&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Kong-Wah%20Wan&rft.date=2010-09&rft.spage=3893&rft.epage=3896&rft.pages=3893-3896&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424479924&rft.isbn_list=1424479924&rft_id=info:doi/10.1109/ICIP.2010.5653980&rft_dat=%3Cieee_6IE%3E5653980%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424479948&rft.eisbn_list=1424479940&rft.eisbn_list=1424479932&rft.eisbn_list=9781424479931&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5653980&rfr_iscdi=true