Anisotropic diffusion using power watersheds
Many computer vision applications such as image filtering, segmentation and stereo-vision can be formulated as optimization problems. Whereas in previous decades continuous-domain, iterative procedures were common, recently discrete, convex, globally optimal methods have received a lot of attention....
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4156 |
---|---|
container_issue | |
container_start_page | 4153 |
container_title | |
container_volume | |
creator | Couprie, C Grady, L Najman, L Talbot, H |
description | Many computer vision applications such as image filtering, segmentation and stereo-vision can be formulated as optimization problems. Whereas in previous decades continuous-domain, iterative procedures were common, recently discrete, convex, globally optimal methods have received a lot of attention. However not all problems in computer vision are convex, for instance L 0 norm optimization such as seen in compressive sensing. Recently, a novel discrete framework encompassing many known segmentation methods was proposed: power watershed. We are interested to explore the possibilities of this minimizer to solve other problems than segmentation, in particular with respect to unusual norms optimization. In this article we reformulate the problem of anisotropic diffusion as an L 0 optimization problem, and we show that power watersheds are able to optimize this energy quickly and effectively. This study paves the way for using the power watershed as a useful general-purpose minimizer in many different computer vision contexts. |
doi_str_mv | 10.1109/ICIP.2010.5653896 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_5653896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5653896</ieee_id><sourcerecordid>oai_HAL_hal_00744091v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h252t-cea70613075b49c60f37fa5a410777020cea49294e7629390202abca559c76df3</originalsourceid><addsrcrecordid>eNpVkE9Lw0AQxdd_YK39AOIlV8HU2d3Z7M4xBLWBgB70HLbJxq7UpmSjxW_vSovgZR7z5sd7MIxdcZhzDnRXFuXzXEBcVaakoeyIzUgbjgJRE6E5ZhMhDU-NQjr5dxN4yiZcCZGiMXDOLkJ4B4hZkk_Ybb7xoR-HfuubpPVd9xl8v0ni3Lwl237nhmRnRzeElWvDJTvr7Dq42UGn7PXh_qVYpNXTY1nkVboSSoxp46yGjEvQaonUZNBJ3VllkYPWOjZHAEkQOp0JkhQdYZeNVYoanbWdnLKbfe7Kruvt4D_s8F331teLvKp_PQCNCMS_eGSv96x3zv3BhyfJH9_dVDk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Anisotropic diffusion using power watersheds</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Couprie, C ; Grady, L ; Najman, L ; Talbot, H</creator><creatorcontrib>Couprie, C ; Grady, L ; Najman, L ; Talbot, H</creatorcontrib><description>Many computer vision applications such as image filtering, segmentation and stereo-vision can be formulated as optimization problems. Whereas in previous decades continuous-domain, iterative procedures were common, recently discrete, convex, globally optimal methods have received a lot of attention. However not all problems in computer vision are convex, for instance L 0 norm optimization such as seen in compressive sensing. Recently, a novel discrete framework encompassing many known segmentation methods was proposed: power watershed. We are interested to explore the possibilities of this minimizer to solve other problems than segmentation, in particular with respect to unusual norms optimization. In this article we reformulate the problem of anisotropic diffusion as an L 0 optimization problem, and we show that power watersheds are able to optimize this energy quickly and effectively. This study paves the way for using the power watershed as a useful general-purpose minimizer in many different computer vision contexts.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424479924</identifier><identifier>ISBN: 1424479924</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424479948</identifier><identifier>EISBN: 1424479940</identifier><identifier>EISBN: 1424479932</identifier><identifier>EISBN: 9781424479931</identifier><identifier>DOI: 10.1109/ICIP.2010.5653896</identifier><language>eng</language><publisher>IEEE</publisher><subject>Anisotropic magnetoresistance ; Combinatorial optimization ; Computer Science ; denoising ; Engineering Sciences ; image processing ; Image segmentation ; mathematical morphology ; Noise reduction ; Optimization ; Pixel ; PSNR ; Robustness ; Signal and Image Processing ; watersheds</subject><ispartof>2010 IEEE International Conference on Image Processing, 2010, p.4153-4156</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6190-0235 ; 0000-0002-2179-3498</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5653896$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,780,784,789,790,885,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5653896$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-00744091$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Couprie, C</creatorcontrib><creatorcontrib>Grady, L</creatorcontrib><creatorcontrib>Najman, L</creatorcontrib><creatorcontrib>Talbot, H</creatorcontrib><title>Anisotropic diffusion using power watersheds</title><title>2010 IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>Many computer vision applications such as image filtering, segmentation and stereo-vision can be formulated as optimization problems. Whereas in previous decades continuous-domain, iterative procedures were common, recently discrete, convex, globally optimal methods have received a lot of attention. However not all problems in computer vision are convex, for instance L 0 norm optimization such as seen in compressive sensing. Recently, a novel discrete framework encompassing many known segmentation methods was proposed: power watershed. We are interested to explore the possibilities of this minimizer to solve other problems than segmentation, in particular with respect to unusual norms optimization. In this article we reformulate the problem of anisotropic diffusion as an L 0 optimization problem, and we show that power watersheds are able to optimize this energy quickly and effectively. This study paves the way for using the power watershed as a useful general-purpose minimizer in many different computer vision contexts.</description><subject>Anisotropic magnetoresistance</subject><subject>Combinatorial optimization</subject><subject>Computer Science</subject><subject>denoising</subject><subject>Engineering Sciences</subject><subject>image processing</subject><subject>Image segmentation</subject><subject>mathematical morphology</subject><subject>Noise reduction</subject><subject>Optimization</subject><subject>Pixel</subject><subject>PSNR</subject><subject>Robustness</subject><subject>Signal and Image Processing</subject><subject>watersheds</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424479924</isbn><isbn>1424479924</isbn><isbn>9781424479948</isbn><isbn>1424479940</isbn><isbn>1424479932</isbn><isbn>9781424479931</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkE9Lw0AQxdd_YK39AOIlV8HU2d3Z7M4xBLWBgB70HLbJxq7UpmSjxW_vSovgZR7z5sd7MIxdcZhzDnRXFuXzXEBcVaakoeyIzUgbjgJRE6E5ZhMhDU-NQjr5dxN4yiZcCZGiMXDOLkJ4B4hZkk_Ybb7xoR-HfuubpPVd9xl8v0ni3Lwl237nhmRnRzeElWvDJTvr7Dq42UGn7PXh_qVYpNXTY1nkVboSSoxp46yGjEvQaonUZNBJ3VllkYPWOjZHAEkQOp0JkhQdYZeNVYoanbWdnLKbfe7Kruvt4D_s8F331teLvKp_PQCNCMS_eGSv96x3zv3BhyfJH9_dVDk</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Couprie, C</creator><creator>Grady, L</creator><creator>Najman, L</creator><creator>Talbot, H</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6190-0235</orcidid><orcidid>https://orcid.org/0000-0002-2179-3498</orcidid></search><sort><creationdate>201009</creationdate><title>Anisotropic diffusion using power watersheds</title><author>Couprie, C ; Grady, L ; Najman, L ; Talbot, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h252t-cea70613075b49c60f37fa5a410777020cea49294e7629390202abca559c76df3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anisotropic magnetoresistance</topic><topic>Combinatorial optimization</topic><topic>Computer Science</topic><topic>denoising</topic><topic>Engineering Sciences</topic><topic>image processing</topic><topic>Image segmentation</topic><topic>mathematical morphology</topic><topic>Noise reduction</topic><topic>Optimization</topic><topic>Pixel</topic><topic>PSNR</topic><topic>Robustness</topic><topic>Signal and Image Processing</topic><topic>watersheds</topic><toplevel>online_resources</toplevel><creatorcontrib>Couprie, C</creatorcontrib><creatorcontrib>Grady, L</creatorcontrib><creatorcontrib>Najman, L</creatorcontrib><creatorcontrib>Talbot, H</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Couprie, C</au><au>Grady, L</au><au>Najman, L</au><au>Talbot, H</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Anisotropic diffusion using power watersheds</atitle><btitle>2010 IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2010-09</date><risdate>2010</risdate><spage>4153</spage><epage>4156</epage><pages>4153-4156</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424479924</isbn><isbn>1424479924</isbn><eisbn>9781424479948</eisbn><eisbn>1424479940</eisbn><eisbn>1424479932</eisbn><eisbn>9781424479931</eisbn><abstract>Many computer vision applications such as image filtering, segmentation and stereo-vision can be formulated as optimization problems. Whereas in previous decades continuous-domain, iterative procedures were common, recently discrete, convex, globally optimal methods have received a lot of attention. However not all problems in computer vision are convex, for instance L 0 norm optimization such as seen in compressive sensing. Recently, a novel discrete framework encompassing many known segmentation methods was proposed: power watershed. We are interested to explore the possibilities of this minimizer to solve other problems than segmentation, in particular with respect to unusual norms optimization. In this article we reformulate the problem of anisotropic diffusion as an L 0 optimization problem, and we show that power watersheds are able to optimize this energy quickly and effectively. This study paves the way for using the power watershed as a useful general-purpose minimizer in many different computer vision contexts.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2010.5653896</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-6190-0235</orcidid><orcidid>https://orcid.org/0000-0002-2179-3498</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | 2010 IEEE International Conference on Image Processing, 2010, p.4153-4156 |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_5653896 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Anisotropic magnetoresistance Combinatorial optimization Computer Science denoising Engineering Sciences image processing Image segmentation mathematical morphology Noise reduction Optimization Pixel PSNR Robustness Signal and Image Processing watersheds |
title | Anisotropic diffusion using power watersheds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A58%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Anisotropic%20diffusion%20using%20power%20watersheds&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Couprie,%20C&rft.date=2010-09&rft.spage=4153&rft.epage=4156&rft.pages=4153-4156&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424479924&rft.isbn_list=1424479924&rft_id=info:doi/10.1109/ICIP.2010.5653896&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_00744091v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424479948&rft.eisbn_list=1424479940&rft.eisbn_list=1424479932&rft.eisbn_list=9781424479931&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5653896&rfr_iscdi=true |