Anisotropic diffusion using power watersheds

Many computer vision applications such as image filtering, segmentation and stereo-vision can be formulated as optimization problems. Whereas in previous decades continuous-domain, iterative procedures were common, recently discrete, convex, globally optimal methods have received a lot of attention....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Couprie, C, Grady, L, Najman, L, Talbot, H
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4156
container_issue
container_start_page 4153
container_title
container_volume
creator Couprie, C
Grady, L
Najman, L
Talbot, H
description Many computer vision applications such as image filtering, segmentation and stereo-vision can be formulated as optimization problems. Whereas in previous decades continuous-domain, iterative procedures were common, recently discrete, convex, globally optimal methods have received a lot of attention. However not all problems in computer vision are convex, for instance L 0 norm optimization such as seen in compressive sensing. Recently, a novel discrete framework encompassing many known segmentation methods was proposed: power watershed. We are interested to explore the possibilities of this minimizer to solve other problems than segmentation, in particular with respect to unusual norms optimization. In this article we reformulate the problem of anisotropic diffusion as an L 0 optimization problem, and we show that power watersheds are able to optimize this energy quickly and effectively. This study paves the way for using the power watershed as a useful general-purpose minimizer in many different computer vision contexts.
doi_str_mv 10.1109/ICIP.2010.5653896
format Conference Proceeding
fullrecord <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_5653896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5653896</ieee_id><sourcerecordid>oai_HAL_hal_00744091v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h252t-cea70613075b49c60f37fa5a410777020cea49294e7629390202abca559c76df3</originalsourceid><addsrcrecordid>eNpVkE9Lw0AQxdd_YK39AOIlV8HU2d3Z7M4xBLWBgB70HLbJxq7UpmSjxW_vSovgZR7z5sd7MIxdcZhzDnRXFuXzXEBcVaakoeyIzUgbjgJRE6E5ZhMhDU-NQjr5dxN4yiZcCZGiMXDOLkJ4B4hZkk_Ybb7xoR-HfuubpPVd9xl8v0ni3Lwl237nhmRnRzeElWvDJTvr7Dq42UGn7PXh_qVYpNXTY1nkVboSSoxp46yGjEvQaonUZNBJ3VllkYPWOjZHAEkQOp0JkhQdYZeNVYoanbWdnLKbfe7Kruvt4D_s8F331teLvKp_PQCNCMS_eGSv96x3zv3BhyfJH9_dVDk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Anisotropic diffusion using power watersheds</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Couprie, C ; Grady, L ; Najman, L ; Talbot, H</creator><creatorcontrib>Couprie, C ; Grady, L ; Najman, L ; Talbot, H</creatorcontrib><description>Many computer vision applications such as image filtering, segmentation and stereo-vision can be formulated as optimization problems. Whereas in previous decades continuous-domain, iterative procedures were common, recently discrete, convex, globally optimal methods have received a lot of attention. However not all problems in computer vision are convex, for instance L 0 norm optimization such as seen in compressive sensing. Recently, a novel discrete framework encompassing many known segmentation methods was proposed: power watershed. We are interested to explore the possibilities of this minimizer to solve other problems than segmentation, in particular with respect to unusual norms optimization. In this article we reformulate the problem of anisotropic diffusion as an L 0 optimization problem, and we show that power watersheds are able to optimize this energy quickly and effectively. This study paves the way for using the power watershed as a useful general-purpose minimizer in many different computer vision contexts.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424479924</identifier><identifier>ISBN: 1424479924</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424479948</identifier><identifier>EISBN: 1424479940</identifier><identifier>EISBN: 1424479932</identifier><identifier>EISBN: 9781424479931</identifier><identifier>DOI: 10.1109/ICIP.2010.5653896</identifier><language>eng</language><publisher>IEEE</publisher><subject>Anisotropic magnetoresistance ; Combinatorial optimization ; Computer Science ; denoising ; Engineering Sciences ; image processing ; Image segmentation ; mathematical morphology ; Noise reduction ; Optimization ; Pixel ; PSNR ; Robustness ; Signal and Image Processing ; watersheds</subject><ispartof>2010 IEEE International Conference on Image Processing, 2010, p.4153-4156</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6190-0235 ; 0000-0002-2179-3498</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5653896$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,780,784,789,790,885,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5653896$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-00744091$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Couprie, C</creatorcontrib><creatorcontrib>Grady, L</creatorcontrib><creatorcontrib>Najman, L</creatorcontrib><creatorcontrib>Talbot, H</creatorcontrib><title>Anisotropic diffusion using power watersheds</title><title>2010 IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>Many computer vision applications such as image filtering, segmentation and stereo-vision can be formulated as optimization problems. Whereas in previous decades continuous-domain, iterative procedures were common, recently discrete, convex, globally optimal methods have received a lot of attention. However not all problems in computer vision are convex, for instance L 0 norm optimization such as seen in compressive sensing. Recently, a novel discrete framework encompassing many known segmentation methods was proposed: power watershed. We are interested to explore the possibilities of this minimizer to solve other problems than segmentation, in particular with respect to unusual norms optimization. In this article we reformulate the problem of anisotropic diffusion as an L 0 optimization problem, and we show that power watersheds are able to optimize this energy quickly and effectively. This study paves the way for using the power watershed as a useful general-purpose minimizer in many different computer vision contexts.</description><subject>Anisotropic magnetoresistance</subject><subject>Combinatorial optimization</subject><subject>Computer Science</subject><subject>denoising</subject><subject>Engineering Sciences</subject><subject>image processing</subject><subject>Image segmentation</subject><subject>mathematical morphology</subject><subject>Noise reduction</subject><subject>Optimization</subject><subject>Pixel</subject><subject>PSNR</subject><subject>Robustness</subject><subject>Signal and Image Processing</subject><subject>watersheds</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424479924</isbn><isbn>1424479924</isbn><isbn>9781424479948</isbn><isbn>1424479940</isbn><isbn>1424479932</isbn><isbn>9781424479931</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkE9Lw0AQxdd_YK39AOIlV8HU2d3Z7M4xBLWBgB70HLbJxq7UpmSjxW_vSovgZR7z5sd7MIxdcZhzDnRXFuXzXEBcVaakoeyIzUgbjgJRE6E5ZhMhDU-NQjr5dxN4yiZcCZGiMXDOLkJ4B4hZkk_Ybb7xoR-HfuubpPVd9xl8v0ni3Lwl237nhmRnRzeElWvDJTvr7Dq42UGn7PXh_qVYpNXTY1nkVboSSoxp46yGjEvQaonUZNBJ3VllkYPWOjZHAEkQOp0JkhQdYZeNVYoanbWdnLKbfe7Kruvt4D_s8F331teLvKp_PQCNCMS_eGSv96x3zv3BhyfJH9_dVDk</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Couprie, C</creator><creator>Grady, L</creator><creator>Najman, L</creator><creator>Talbot, H</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6190-0235</orcidid><orcidid>https://orcid.org/0000-0002-2179-3498</orcidid></search><sort><creationdate>201009</creationdate><title>Anisotropic diffusion using power watersheds</title><author>Couprie, C ; Grady, L ; Najman, L ; Talbot, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h252t-cea70613075b49c60f37fa5a410777020cea49294e7629390202abca559c76df3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anisotropic magnetoresistance</topic><topic>Combinatorial optimization</topic><topic>Computer Science</topic><topic>denoising</topic><topic>Engineering Sciences</topic><topic>image processing</topic><topic>Image segmentation</topic><topic>mathematical morphology</topic><topic>Noise reduction</topic><topic>Optimization</topic><topic>Pixel</topic><topic>PSNR</topic><topic>Robustness</topic><topic>Signal and Image Processing</topic><topic>watersheds</topic><toplevel>online_resources</toplevel><creatorcontrib>Couprie, C</creatorcontrib><creatorcontrib>Grady, L</creatorcontrib><creatorcontrib>Najman, L</creatorcontrib><creatorcontrib>Talbot, H</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Couprie, C</au><au>Grady, L</au><au>Najman, L</au><au>Talbot, H</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Anisotropic diffusion using power watersheds</atitle><btitle>2010 IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2010-09</date><risdate>2010</risdate><spage>4153</spage><epage>4156</epage><pages>4153-4156</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424479924</isbn><isbn>1424479924</isbn><eisbn>9781424479948</eisbn><eisbn>1424479940</eisbn><eisbn>1424479932</eisbn><eisbn>9781424479931</eisbn><abstract>Many computer vision applications such as image filtering, segmentation and stereo-vision can be formulated as optimization problems. Whereas in previous decades continuous-domain, iterative procedures were common, recently discrete, convex, globally optimal methods have received a lot of attention. However not all problems in computer vision are convex, for instance L 0 norm optimization such as seen in compressive sensing. Recently, a novel discrete framework encompassing many known segmentation methods was proposed: power watershed. We are interested to explore the possibilities of this minimizer to solve other problems than segmentation, in particular with respect to unusual norms optimization. In this article we reformulate the problem of anisotropic diffusion as an L 0 optimization problem, and we show that power watersheds are able to optimize this energy quickly and effectively. This study paves the way for using the power watershed as a useful general-purpose minimizer in many different computer vision contexts.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2010.5653896</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-6190-0235</orcidid><orcidid>https://orcid.org/0000-0002-2179-3498</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2010 IEEE International Conference on Image Processing, 2010, p.4153-4156
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_5653896
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Anisotropic magnetoresistance
Combinatorial optimization
Computer Science
denoising
Engineering Sciences
image processing
Image segmentation
mathematical morphology
Noise reduction
Optimization
Pixel
PSNR
Robustness
Signal and Image Processing
watersheds
title Anisotropic diffusion using power watersheds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A58%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Anisotropic%20diffusion%20using%20power%20watersheds&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Couprie,%20C&rft.date=2010-09&rft.spage=4153&rft.epage=4156&rft.pages=4153-4156&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424479924&rft.isbn_list=1424479924&rft_id=info:doi/10.1109/ICIP.2010.5653896&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_00744091v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424479948&rft.eisbn_list=1424479940&rft.eisbn_list=1424479932&rft.eisbn_list=9781424479931&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5653896&rfr_iscdi=true