A statistical approach for shadow detection using spatio-temporal contexts

Background subtraction is an important step used to segment moving regions in surveillance videos. However, cast shadows are often falsely labeled as foreground objects, which may severely degrade the accuracy of object localization and detection. Effective shadow detection is necessary for accurate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yiyang Liu, Adjeroh, D
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3460
container_issue
container_start_page 3457
container_title
container_volume
creator Yiyang Liu
Adjeroh, D
description Background subtraction is an important step used to segment moving regions in surveillance videos. However, cast shadows are often falsely labeled as foreground objects, which may severely degrade the accuracy of object localization and detection. Effective shadow detection is necessary for accurate foreground segmentation, especially for outdoor scenes. Based on the characteristics of shadows, such as luminance reduction, chromaticity invariance and texture invariance, we introduce a nonparametric framework for modeling surface behavior under cast shadows. To each pixel, we assign a potential shadow value with a confidence weight, indicating the probability that the pixel location is an actual shadow point. Given an observed RGB value for a pixel in a new frame, we use its recent spatio-temporal context to compute an expected shadow RGB value. The similarity between the observed and the expected shadow RGB values determines whether a pixel position is a true shadow. Experimental results show the performance of the proposed method on a suite of standard indoor and outdoor video sequences.
doi_str_mv 10.1109/ICIP.2010.5653764
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5653764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5653764</ieee_id><sourcerecordid>5653764</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-521ccde051b04c02daa12286d44a1699b1232fd0522540c6bb7f77d85dcaa7bb3</originalsourceid><addsrcrecordid>eNpVUEtOwzAUND-JUnoAxMYXSPF7sWN7WUUUgirBAtaVYzvUqI2j2Ai4PZHohtVoNB-NhpAbYEsApu-aunlZIpuoqEQpK35CFloq4Mi51JqrUzLDUkGhBNdn_zTk52QGArHgSrFLcpXSB2NTVwkz8rSiKZscUg7W7KkZhjEau6NdHGnaGRe_qPPZ2xxiTz9T6N9pGiZ_LLI_DHGcMjb22X_ndE0uOrNPfnHEOXlb37_Wj8Xm-aGpV5siIKhcCARrnWcCWsYtQ2cMIKrKcW6g0roFLLFzbBosOLNV28pOSqeEs8bIti3n5PavN3jvt8MYDmb82R5vKX8BJaZSpg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A statistical approach for shadow detection using spatio-temporal contexts</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yiyang Liu ; Adjeroh, D</creator><creatorcontrib>Yiyang Liu ; Adjeroh, D</creatorcontrib><description>Background subtraction is an important step used to segment moving regions in surveillance videos. However, cast shadows are often falsely labeled as foreground objects, which may severely degrade the accuracy of object localization and detection. Effective shadow detection is necessary for accurate foreground segmentation, especially for outdoor scenes. Based on the characteristics of shadows, such as luminance reduction, chromaticity invariance and texture invariance, we introduce a nonparametric framework for modeling surface behavior under cast shadows. To each pixel, we assign a potential shadow value with a confidence weight, indicating the probability that the pixel location is an actual shadow point. Given an observed RGB value for a pixel in a new frame, we use its recent spatio-temporal context to compute an expected shadow RGB value. The similarity between the observed and the expected shadow RGB values determines whether a pixel position is a true shadow. Experimental results show the performance of the proposed method on a suite of standard indoor and outdoor video sequences.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424479924</identifier><identifier>ISBN: 1424479924</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424479948</identifier><identifier>EISBN: 1424479940</identifier><identifier>EISBN: 1424479932</identifier><identifier>EISBN: 9781424479931</identifier><identifier>DOI: 10.1109/ICIP.2010.5653764</identifier><language>eng</language><publisher>IEEE</publisher><subject>background segmentation ; chromaticity ; Color ; Context ; Histograms ; Light sources ; Lighting ; Pixel ; Shadow detection ; spatio-temporal contexts ; texture ; Video sequences ; visual surveillance</subject><ispartof>2010 IEEE International Conference on Image Processing, 2010, p.3457-3460</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5653764$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5653764$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yiyang Liu</creatorcontrib><creatorcontrib>Adjeroh, D</creatorcontrib><title>A statistical approach for shadow detection using spatio-temporal contexts</title><title>2010 IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>Background subtraction is an important step used to segment moving regions in surveillance videos. However, cast shadows are often falsely labeled as foreground objects, which may severely degrade the accuracy of object localization and detection. Effective shadow detection is necessary for accurate foreground segmentation, especially for outdoor scenes. Based on the characteristics of shadows, such as luminance reduction, chromaticity invariance and texture invariance, we introduce a nonparametric framework for modeling surface behavior under cast shadows. To each pixel, we assign a potential shadow value with a confidence weight, indicating the probability that the pixel location is an actual shadow point. Given an observed RGB value for a pixel in a new frame, we use its recent spatio-temporal context to compute an expected shadow RGB value. The similarity between the observed and the expected shadow RGB values determines whether a pixel position is a true shadow. Experimental results show the performance of the proposed method on a suite of standard indoor and outdoor video sequences.</description><subject>background segmentation</subject><subject>chromaticity</subject><subject>Color</subject><subject>Context</subject><subject>Histograms</subject><subject>Light sources</subject><subject>Lighting</subject><subject>Pixel</subject><subject>Shadow detection</subject><subject>spatio-temporal contexts</subject><subject>texture</subject><subject>Video sequences</subject><subject>visual surveillance</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424479924</isbn><isbn>1424479924</isbn><isbn>9781424479948</isbn><isbn>1424479940</isbn><isbn>1424479932</isbn><isbn>9781424479931</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUEtOwzAUND-JUnoAxMYXSPF7sWN7WUUUgirBAtaVYzvUqI2j2Ai4PZHohtVoNB-NhpAbYEsApu-aunlZIpuoqEQpK35CFloq4Mi51JqrUzLDUkGhBNdn_zTk52QGArHgSrFLcpXSB2NTVwkz8rSiKZscUg7W7KkZhjEau6NdHGnaGRe_qPPZ2xxiTz9T6N9pGiZ_LLI_DHGcMjb22X_ndE0uOrNPfnHEOXlb37_Wj8Xm-aGpV5siIKhcCARrnWcCWsYtQ2cMIKrKcW6g0roFLLFzbBosOLNV28pOSqeEs8bIti3n5PavN3jvt8MYDmb82R5vKX8BJaZSpg</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Yiyang Liu</creator><creator>Adjeroh, D</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20100101</creationdate><title>A statistical approach for shadow detection using spatio-temporal contexts</title><author>Yiyang Liu ; Adjeroh, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-521ccde051b04c02daa12286d44a1699b1232fd0522540c6bb7f77d85dcaa7bb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>background segmentation</topic><topic>chromaticity</topic><topic>Color</topic><topic>Context</topic><topic>Histograms</topic><topic>Light sources</topic><topic>Lighting</topic><topic>Pixel</topic><topic>Shadow detection</topic><topic>spatio-temporal contexts</topic><topic>texture</topic><topic>Video sequences</topic><topic>visual surveillance</topic><toplevel>online_resources</toplevel><creatorcontrib>Yiyang Liu</creatorcontrib><creatorcontrib>Adjeroh, D</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yiyang Liu</au><au>Adjeroh, D</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A statistical approach for shadow detection using spatio-temporal contexts</atitle><btitle>2010 IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2010-01-01</date><risdate>2010</risdate><spage>3457</spage><epage>3460</epage><pages>3457-3460</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424479924</isbn><isbn>1424479924</isbn><eisbn>9781424479948</eisbn><eisbn>1424479940</eisbn><eisbn>1424479932</eisbn><eisbn>9781424479931</eisbn><abstract>Background subtraction is an important step used to segment moving regions in surveillance videos. However, cast shadows are often falsely labeled as foreground objects, which may severely degrade the accuracy of object localization and detection. Effective shadow detection is necessary for accurate foreground segmentation, especially for outdoor scenes. Based on the characteristics of shadows, such as luminance reduction, chromaticity invariance and texture invariance, we introduce a nonparametric framework for modeling surface behavior under cast shadows. To each pixel, we assign a potential shadow value with a confidence weight, indicating the probability that the pixel location is an actual shadow point. Given an observed RGB value for a pixel in a new frame, we use its recent spatio-temporal context to compute an expected shadow RGB value. The similarity between the observed and the expected shadow RGB values determines whether a pixel position is a true shadow. Experimental results show the performance of the proposed method on a suite of standard indoor and outdoor video sequences.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2010.5653764</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2010 IEEE International Conference on Image Processing, 2010, p.3457-3460
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_5653764
source IEEE Electronic Library (IEL) Conference Proceedings
subjects background segmentation
chromaticity
Color
Context
Histograms
Light sources
Lighting
Pixel
Shadow detection
spatio-temporal contexts
texture
Video sequences
visual surveillance
title A statistical approach for shadow detection using spatio-temporal contexts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A09%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20statistical%20approach%20for%20shadow%20detection%20using%20spatio-temporal%20contexts&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Yiyang%20Liu&rft.date=2010-01-01&rft.spage=3457&rft.epage=3460&rft.pages=3457-3460&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424479924&rft.isbn_list=1424479924&rft_id=info:doi/10.1109/ICIP.2010.5653764&rft_dat=%3Cieee_6IE%3E5653764%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424479948&rft.eisbn_list=1424479940&rft.eisbn_list=1424479932&rft.eisbn_list=9781424479931&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5653764&rfr_iscdi=true