A statistical approach for shadow detection using spatio-temporal contexts
Background subtraction is an important step used to segment moving regions in surveillance videos. However, cast shadows are often falsely labeled as foreground objects, which may severely degrade the accuracy of object localization and detection. Effective shadow detection is necessary for accurate...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3460 |
---|---|
container_issue | |
container_start_page | 3457 |
container_title | |
container_volume | |
creator | Yiyang Liu Adjeroh, D |
description | Background subtraction is an important step used to segment moving regions in surveillance videos. However, cast shadows are often falsely labeled as foreground objects, which may severely degrade the accuracy of object localization and detection. Effective shadow detection is necessary for accurate foreground segmentation, especially for outdoor scenes. Based on the characteristics of shadows, such as luminance reduction, chromaticity invariance and texture invariance, we introduce a nonparametric framework for modeling surface behavior under cast shadows. To each pixel, we assign a potential shadow value with a confidence weight, indicating the probability that the pixel location is an actual shadow point. Given an observed RGB value for a pixel in a new frame, we use its recent spatio-temporal context to compute an expected shadow RGB value. The similarity between the observed and the expected shadow RGB values determines whether a pixel position is a true shadow. Experimental results show the performance of the proposed method on a suite of standard indoor and outdoor video sequences. |
doi_str_mv | 10.1109/ICIP.2010.5653764 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5653764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5653764</ieee_id><sourcerecordid>5653764</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-521ccde051b04c02daa12286d44a1699b1232fd0522540c6bb7f77d85dcaa7bb3</originalsourceid><addsrcrecordid>eNpVUEtOwzAUND-JUnoAxMYXSPF7sWN7WUUUgirBAtaVYzvUqI2j2Ai4PZHohtVoNB-NhpAbYEsApu-aunlZIpuoqEQpK35CFloq4Mi51JqrUzLDUkGhBNdn_zTk52QGArHgSrFLcpXSB2NTVwkz8rSiKZscUg7W7KkZhjEau6NdHGnaGRe_qPPZ2xxiTz9T6N9pGiZ_LLI_DHGcMjb22X_ndE0uOrNPfnHEOXlb37_Wj8Xm-aGpV5siIKhcCARrnWcCWsYtQ2cMIKrKcW6g0roFLLFzbBosOLNV28pOSqeEs8bIti3n5PavN3jvt8MYDmb82R5vKX8BJaZSpg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A statistical approach for shadow detection using spatio-temporal contexts</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yiyang Liu ; Adjeroh, D</creator><creatorcontrib>Yiyang Liu ; Adjeroh, D</creatorcontrib><description>Background subtraction is an important step used to segment moving regions in surveillance videos. However, cast shadows are often falsely labeled as foreground objects, which may severely degrade the accuracy of object localization and detection. Effective shadow detection is necessary for accurate foreground segmentation, especially for outdoor scenes. Based on the characteristics of shadows, such as luminance reduction, chromaticity invariance and texture invariance, we introduce a nonparametric framework for modeling surface behavior under cast shadows. To each pixel, we assign a potential shadow value with a confidence weight, indicating the probability that the pixel location is an actual shadow point. Given an observed RGB value for a pixel in a new frame, we use its recent spatio-temporal context to compute an expected shadow RGB value. The similarity between the observed and the expected shadow RGB values determines whether a pixel position is a true shadow. Experimental results show the performance of the proposed method on a suite of standard indoor and outdoor video sequences.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424479924</identifier><identifier>ISBN: 1424479924</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424479948</identifier><identifier>EISBN: 1424479940</identifier><identifier>EISBN: 1424479932</identifier><identifier>EISBN: 9781424479931</identifier><identifier>DOI: 10.1109/ICIP.2010.5653764</identifier><language>eng</language><publisher>IEEE</publisher><subject>background segmentation ; chromaticity ; Color ; Context ; Histograms ; Light sources ; Lighting ; Pixel ; Shadow detection ; spatio-temporal contexts ; texture ; Video sequences ; visual surveillance</subject><ispartof>2010 IEEE International Conference on Image Processing, 2010, p.3457-3460</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5653764$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5653764$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yiyang Liu</creatorcontrib><creatorcontrib>Adjeroh, D</creatorcontrib><title>A statistical approach for shadow detection using spatio-temporal contexts</title><title>2010 IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>Background subtraction is an important step used to segment moving regions in surveillance videos. However, cast shadows are often falsely labeled as foreground objects, which may severely degrade the accuracy of object localization and detection. Effective shadow detection is necessary for accurate foreground segmentation, especially for outdoor scenes. Based on the characteristics of shadows, such as luminance reduction, chromaticity invariance and texture invariance, we introduce a nonparametric framework for modeling surface behavior under cast shadows. To each pixel, we assign a potential shadow value with a confidence weight, indicating the probability that the pixel location is an actual shadow point. Given an observed RGB value for a pixel in a new frame, we use its recent spatio-temporal context to compute an expected shadow RGB value. The similarity between the observed and the expected shadow RGB values determines whether a pixel position is a true shadow. Experimental results show the performance of the proposed method on a suite of standard indoor and outdoor video sequences.</description><subject>background segmentation</subject><subject>chromaticity</subject><subject>Color</subject><subject>Context</subject><subject>Histograms</subject><subject>Light sources</subject><subject>Lighting</subject><subject>Pixel</subject><subject>Shadow detection</subject><subject>spatio-temporal contexts</subject><subject>texture</subject><subject>Video sequences</subject><subject>visual surveillance</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424479924</isbn><isbn>1424479924</isbn><isbn>9781424479948</isbn><isbn>1424479940</isbn><isbn>1424479932</isbn><isbn>9781424479931</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUEtOwzAUND-JUnoAxMYXSPF7sWN7WUUUgirBAtaVYzvUqI2j2Ai4PZHohtVoNB-NhpAbYEsApu-aunlZIpuoqEQpK35CFloq4Mi51JqrUzLDUkGhBNdn_zTk52QGArHgSrFLcpXSB2NTVwkz8rSiKZscUg7W7KkZhjEau6NdHGnaGRe_qPPZ2xxiTz9T6N9pGiZ_LLI_DHGcMjb22X_ndE0uOrNPfnHEOXlb37_Wj8Xm-aGpV5siIKhcCARrnWcCWsYtQ2cMIKrKcW6g0roFLLFzbBosOLNV28pOSqeEs8bIti3n5PavN3jvt8MYDmb82R5vKX8BJaZSpg</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Yiyang Liu</creator><creator>Adjeroh, D</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20100101</creationdate><title>A statistical approach for shadow detection using spatio-temporal contexts</title><author>Yiyang Liu ; Adjeroh, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-521ccde051b04c02daa12286d44a1699b1232fd0522540c6bb7f77d85dcaa7bb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>background segmentation</topic><topic>chromaticity</topic><topic>Color</topic><topic>Context</topic><topic>Histograms</topic><topic>Light sources</topic><topic>Lighting</topic><topic>Pixel</topic><topic>Shadow detection</topic><topic>spatio-temporal contexts</topic><topic>texture</topic><topic>Video sequences</topic><topic>visual surveillance</topic><toplevel>online_resources</toplevel><creatorcontrib>Yiyang Liu</creatorcontrib><creatorcontrib>Adjeroh, D</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yiyang Liu</au><au>Adjeroh, D</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A statistical approach for shadow detection using spatio-temporal contexts</atitle><btitle>2010 IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2010-01-01</date><risdate>2010</risdate><spage>3457</spage><epage>3460</epage><pages>3457-3460</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424479924</isbn><isbn>1424479924</isbn><eisbn>9781424479948</eisbn><eisbn>1424479940</eisbn><eisbn>1424479932</eisbn><eisbn>9781424479931</eisbn><abstract>Background subtraction is an important step used to segment moving regions in surveillance videos. However, cast shadows are often falsely labeled as foreground objects, which may severely degrade the accuracy of object localization and detection. Effective shadow detection is necessary for accurate foreground segmentation, especially for outdoor scenes. Based on the characteristics of shadows, such as luminance reduction, chromaticity invariance and texture invariance, we introduce a nonparametric framework for modeling surface behavior under cast shadows. To each pixel, we assign a potential shadow value with a confidence weight, indicating the probability that the pixel location is an actual shadow point. Given an observed RGB value for a pixel in a new frame, we use its recent spatio-temporal context to compute an expected shadow RGB value. The similarity between the observed and the expected shadow RGB values determines whether a pixel position is a true shadow. Experimental results show the performance of the proposed method on a suite of standard indoor and outdoor video sequences.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2010.5653764</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | 2010 IEEE International Conference on Image Processing, 2010, p.3457-3460 |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_5653764 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | background segmentation chromaticity Color Context Histograms Light sources Lighting Pixel Shadow detection spatio-temporal contexts texture Video sequences visual surveillance |
title | A statistical approach for shadow detection using spatio-temporal contexts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A09%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20statistical%20approach%20for%20shadow%20detection%20using%20spatio-temporal%20contexts&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Yiyang%20Liu&rft.date=2010-01-01&rft.spage=3457&rft.epage=3460&rft.pages=3457-3460&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424479924&rft.isbn_list=1424479924&rft_id=info:doi/10.1109/ICIP.2010.5653764&rft_dat=%3Cieee_6IE%3E5653764%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424479948&rft.eisbn_list=1424479940&rft.eisbn_list=1424479932&rft.eisbn_list=9781424479931&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5653764&rfr_iscdi=true |