The impact of band selection on hyperspectral point target detection algorithms
In this paper, we explore the influence of band selection and dimensionality reduction of hyperspectral data on three point target detection algorithms. We wish to reduce the computational burden and to maximize the algorithms' performance by taking into consideration high spectral correlation....
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4763 |
---|---|
container_issue | |
container_start_page | 4761 |
container_title | |
container_volume | |
creator | Rotman, S R Vortman, M Biton, C |
description | In this paper, we explore the influence of band selection and dimensionality reduction of hyperspectral data on three point target detection algorithms. We wish to reduce the computational burden and to maximize the algorithms' performance by taking into consideration high spectral correlation. In order to measure the discrimination capability of target detection algorithms, we implemented a metric to quantitatively evaluate our algorithm for a particular combination of target signature, spectral cube, and bands chosen. Band selection was done in several ways; we evaluate our results both with exhaustive search and a "sub-optimal" selection algorithm. |
doi_str_mv | 10.1109/IGARSS.2010.5653628 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5653628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5653628</ieee_id><sourcerecordid>5653628</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d161cb5ea4bf59bd645d98c88d339f4a6b398258e29e4e6297a2c5c5fd4641ec3</originalsourceid><addsrcrecordid>eNo1UNtqAjEUTG9QtX6BL_mBtblv8ijSWkEQqn2WbHLWTdkbm7z4913oCgMDM8PADEIrStaUEvO-322-T6c1I6MgleSK6Qe0NLmmgglhpBL0Ec0YlTzLCeFPaH43JHueDGWMekXzGH_HhGaEzNDxXAEOTW9dwl2JC9t6HKEGl0LX4hHVrYch9qMw2Br3XWgTTna4QsIe0pSz9bUbQqqa-IZeSltHWE68QD-fH-ftV3Y47vbbzSELNJcp81RRV0iwoiilKbwS0hvttPacm1JYVXCjmdTADAhQzOSWOelk6cU4FBxfoNV_bwCASz-Exg63y3QM_wPp21R9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The impact of band selection on hyperspectral point target detection algorithms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rotman, S R ; Vortman, M ; Biton, C</creator><creatorcontrib>Rotman, S R ; Vortman, M ; Biton, C</creatorcontrib><description>In this paper, we explore the influence of band selection and dimensionality reduction of hyperspectral data on three point target detection algorithms. We wish to reduce the computational burden and to maximize the algorithms' performance by taking into consideration high spectral correlation. In order to measure the discrimination capability of target detection algorithms, we implemented a metric to quantitatively evaluate our algorithm for a particular combination of target signature, spectral cube, and bands chosen. Band selection was done in several ways; we evaluate our results both with exhaustive search and a "sub-optimal" selection algorithm.</description><identifier>ISSN: 2153-6996</identifier><identifier>ISBN: 1424495652</identifier><identifier>ISBN: 9781424495658</identifier><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9781424495641</identifier><identifier>EISBN: 1424495660</identifier><identifier>EISBN: 9781424495665</identifier><identifier>EISBN: 1424495644</identifier><identifier>DOI: 10.1109/IGARSS.2010.5653628</identifier><language>eng</language><publisher>IEEE</publisher><subject>band selection ; Covariance matrix ; Hyperspectral imaging ; Hyperspectral imaging (HSI) ; Image segmentation ; Measurement ; Object detection ; Pixel ; point target detection ; Probability</subject><ispartof>2010 IEEE International Geoscience and Remote Sensing Symposium, 2010, p.4761-4763</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5653628$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5653628$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rotman, S R</creatorcontrib><creatorcontrib>Vortman, M</creatorcontrib><creatorcontrib>Biton, C</creatorcontrib><title>The impact of band selection on hyperspectral point target detection algorithms</title><title>2010 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>In this paper, we explore the influence of band selection and dimensionality reduction of hyperspectral data on three point target detection algorithms. We wish to reduce the computational burden and to maximize the algorithms' performance by taking into consideration high spectral correlation. In order to measure the discrimination capability of target detection algorithms, we implemented a metric to quantitatively evaluate our algorithm for a particular combination of target signature, spectral cube, and bands chosen. Band selection was done in several ways; we evaluate our results both with exhaustive search and a "sub-optimal" selection algorithm.</description><subject>band selection</subject><subject>Covariance matrix</subject><subject>Hyperspectral imaging</subject><subject>Hyperspectral imaging (HSI)</subject><subject>Image segmentation</subject><subject>Measurement</subject><subject>Object detection</subject><subject>Pixel</subject><subject>point target detection</subject><subject>Probability</subject><issn>2153-6996</issn><issn>2153-7003</issn><isbn>1424495652</isbn><isbn>9781424495658</isbn><isbn>9781424495641</isbn><isbn>1424495660</isbn><isbn>9781424495665</isbn><isbn>1424495644</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UNtqAjEUTG9QtX6BL_mBtblv8ijSWkEQqn2WbHLWTdkbm7z4913oCgMDM8PADEIrStaUEvO-322-T6c1I6MgleSK6Qe0NLmmgglhpBL0Ec0YlTzLCeFPaH43JHueDGWMekXzGH_HhGaEzNDxXAEOTW9dwl2JC9t6HKEGl0LX4hHVrYch9qMw2Br3XWgTTna4QsIe0pSz9bUbQqqa-IZeSltHWE68QD-fH-ftV3Y47vbbzSELNJcp81RRV0iwoiilKbwS0hvttPacm1JYVXCjmdTADAhQzOSWOelk6cU4FBxfoNV_bwCASz-Exg63y3QM_wPp21R9</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Rotman, S R</creator><creator>Vortman, M</creator><creator>Biton, C</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201007</creationdate><title>The impact of band selection on hyperspectral point target detection algorithms</title><author>Rotman, S R ; Vortman, M ; Biton, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d161cb5ea4bf59bd645d98c88d339f4a6b398258e29e4e6297a2c5c5fd4641ec3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>band selection</topic><topic>Covariance matrix</topic><topic>Hyperspectral imaging</topic><topic>Hyperspectral imaging (HSI)</topic><topic>Image segmentation</topic><topic>Measurement</topic><topic>Object detection</topic><topic>Pixel</topic><topic>point target detection</topic><topic>Probability</topic><toplevel>online_resources</toplevel><creatorcontrib>Rotman, S R</creatorcontrib><creatorcontrib>Vortman, M</creatorcontrib><creatorcontrib>Biton, C</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rotman, S R</au><au>Vortman, M</au><au>Biton, C</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The impact of band selection on hyperspectral point target detection algorithms</atitle><btitle>2010 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2010-07</date><risdate>2010</risdate><spage>4761</spage><epage>4763</epage><pages>4761-4763</pages><issn>2153-6996</issn><eissn>2153-7003</eissn><isbn>1424495652</isbn><isbn>9781424495658</isbn><eisbn>9781424495641</eisbn><eisbn>1424495660</eisbn><eisbn>9781424495665</eisbn><eisbn>1424495644</eisbn><abstract>In this paper, we explore the influence of band selection and dimensionality reduction of hyperspectral data on three point target detection algorithms. We wish to reduce the computational burden and to maximize the algorithms' performance by taking into consideration high spectral correlation. In order to measure the discrimination capability of target detection algorithms, we implemented a metric to quantitatively evaluate our algorithm for a particular combination of target signature, spectral cube, and bands chosen. Band selection was done in several ways; we evaluate our results both with exhaustive search and a "sub-optimal" selection algorithm.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2010.5653628</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-6996 |
ispartof | 2010 IEEE International Geoscience and Remote Sensing Symposium, 2010, p.4761-4763 |
issn | 2153-6996 2153-7003 |
language | eng |
recordid | cdi_ieee_primary_5653628 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | band selection Covariance matrix Hyperspectral imaging Hyperspectral imaging (HSI) Image segmentation Measurement Object detection Pixel point target detection Probability |
title | The impact of band selection on hyperspectral point target detection algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T23%3A58%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20impact%20of%20band%20selection%20on%20hyperspectral%20point%20target%20detection%20algorithms&rft.btitle=2010%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Rotman,%20S%20R&rft.date=2010-07&rft.spage=4761&rft.epage=4763&rft.pages=4761-4763&rft.issn=2153-6996&rft.eissn=2153-7003&rft.isbn=1424495652&rft.isbn_list=9781424495658&rft_id=info:doi/10.1109/IGARSS.2010.5653628&rft_dat=%3Cieee_6IE%3E5653628%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424495641&rft.eisbn_list=1424495660&rft.eisbn_list=9781424495665&rft.eisbn_list=1424495644&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5653628&rfr_iscdi=true |