The impact of band selection on hyperspectral point target detection algorithms

In this paper, we explore the influence of band selection and dimensionality reduction of hyperspectral data on three point target detection algorithms. We wish to reduce the computational burden and to maximize the algorithms' performance by taking into consideration high spectral correlation....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rotman, S R, Vortman, M, Biton, C
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4763
container_issue
container_start_page 4761
container_title
container_volume
creator Rotman, S R
Vortman, M
Biton, C
description In this paper, we explore the influence of band selection and dimensionality reduction of hyperspectral data on three point target detection algorithms. We wish to reduce the computational burden and to maximize the algorithms' performance by taking into consideration high spectral correlation. In order to measure the discrimination capability of target detection algorithms, we implemented a metric to quantitatively evaluate our algorithm for a particular combination of target signature, spectral cube, and bands chosen. Band selection was done in several ways; we evaluate our results both with exhaustive search and a "sub-optimal" selection algorithm.
doi_str_mv 10.1109/IGARSS.2010.5653628
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5653628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5653628</ieee_id><sourcerecordid>5653628</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d161cb5ea4bf59bd645d98c88d339f4a6b398258e29e4e6297a2c5c5fd4641ec3</originalsourceid><addsrcrecordid>eNo1UNtqAjEUTG9QtX6BL_mBtblv8ijSWkEQqn2WbHLWTdkbm7z4913oCgMDM8PADEIrStaUEvO-322-T6c1I6MgleSK6Qe0NLmmgglhpBL0Ec0YlTzLCeFPaH43JHueDGWMekXzGH_HhGaEzNDxXAEOTW9dwl2JC9t6HKEGl0LX4hHVrYch9qMw2Br3XWgTTna4QsIe0pSz9bUbQqqa-IZeSltHWE68QD-fH-ftV3Y47vbbzSELNJcp81RRV0iwoiilKbwS0hvttPacm1JYVXCjmdTADAhQzOSWOelk6cU4FBxfoNV_bwCASz-Exg63y3QM_wPp21R9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The impact of band selection on hyperspectral point target detection algorithms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rotman, S R ; Vortman, M ; Biton, C</creator><creatorcontrib>Rotman, S R ; Vortman, M ; Biton, C</creatorcontrib><description>In this paper, we explore the influence of band selection and dimensionality reduction of hyperspectral data on three point target detection algorithms. We wish to reduce the computational burden and to maximize the algorithms' performance by taking into consideration high spectral correlation. In order to measure the discrimination capability of target detection algorithms, we implemented a metric to quantitatively evaluate our algorithm for a particular combination of target signature, spectral cube, and bands chosen. Band selection was done in several ways; we evaluate our results both with exhaustive search and a "sub-optimal" selection algorithm.</description><identifier>ISSN: 2153-6996</identifier><identifier>ISBN: 1424495652</identifier><identifier>ISBN: 9781424495658</identifier><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9781424495641</identifier><identifier>EISBN: 1424495660</identifier><identifier>EISBN: 9781424495665</identifier><identifier>EISBN: 1424495644</identifier><identifier>DOI: 10.1109/IGARSS.2010.5653628</identifier><language>eng</language><publisher>IEEE</publisher><subject>band selection ; Covariance matrix ; Hyperspectral imaging ; Hyperspectral imaging (HSI) ; Image segmentation ; Measurement ; Object detection ; Pixel ; point target detection ; Probability</subject><ispartof>2010 IEEE International Geoscience and Remote Sensing Symposium, 2010, p.4761-4763</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5653628$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5653628$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rotman, S R</creatorcontrib><creatorcontrib>Vortman, M</creatorcontrib><creatorcontrib>Biton, C</creatorcontrib><title>The impact of band selection on hyperspectral point target detection algorithms</title><title>2010 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>In this paper, we explore the influence of band selection and dimensionality reduction of hyperspectral data on three point target detection algorithms. We wish to reduce the computational burden and to maximize the algorithms' performance by taking into consideration high spectral correlation. In order to measure the discrimination capability of target detection algorithms, we implemented a metric to quantitatively evaluate our algorithm for a particular combination of target signature, spectral cube, and bands chosen. Band selection was done in several ways; we evaluate our results both with exhaustive search and a "sub-optimal" selection algorithm.</description><subject>band selection</subject><subject>Covariance matrix</subject><subject>Hyperspectral imaging</subject><subject>Hyperspectral imaging (HSI)</subject><subject>Image segmentation</subject><subject>Measurement</subject><subject>Object detection</subject><subject>Pixel</subject><subject>point target detection</subject><subject>Probability</subject><issn>2153-6996</issn><issn>2153-7003</issn><isbn>1424495652</isbn><isbn>9781424495658</isbn><isbn>9781424495641</isbn><isbn>1424495660</isbn><isbn>9781424495665</isbn><isbn>1424495644</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UNtqAjEUTG9QtX6BL_mBtblv8ijSWkEQqn2WbHLWTdkbm7z4913oCgMDM8PADEIrStaUEvO-322-T6c1I6MgleSK6Qe0NLmmgglhpBL0Ec0YlTzLCeFPaH43JHueDGWMekXzGH_HhGaEzNDxXAEOTW9dwl2JC9t6HKEGl0LX4hHVrYch9qMw2Br3XWgTTna4QsIe0pSz9bUbQqqa-IZeSltHWE68QD-fH-ftV3Y47vbbzSELNJcp81RRV0iwoiilKbwS0hvttPacm1JYVXCjmdTADAhQzOSWOelk6cU4FBxfoNV_bwCASz-Exg63y3QM_wPp21R9</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Rotman, S R</creator><creator>Vortman, M</creator><creator>Biton, C</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201007</creationdate><title>The impact of band selection on hyperspectral point target detection algorithms</title><author>Rotman, S R ; Vortman, M ; Biton, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d161cb5ea4bf59bd645d98c88d339f4a6b398258e29e4e6297a2c5c5fd4641ec3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>band selection</topic><topic>Covariance matrix</topic><topic>Hyperspectral imaging</topic><topic>Hyperspectral imaging (HSI)</topic><topic>Image segmentation</topic><topic>Measurement</topic><topic>Object detection</topic><topic>Pixel</topic><topic>point target detection</topic><topic>Probability</topic><toplevel>online_resources</toplevel><creatorcontrib>Rotman, S R</creatorcontrib><creatorcontrib>Vortman, M</creatorcontrib><creatorcontrib>Biton, C</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rotman, S R</au><au>Vortman, M</au><au>Biton, C</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The impact of band selection on hyperspectral point target detection algorithms</atitle><btitle>2010 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2010-07</date><risdate>2010</risdate><spage>4761</spage><epage>4763</epage><pages>4761-4763</pages><issn>2153-6996</issn><eissn>2153-7003</eissn><isbn>1424495652</isbn><isbn>9781424495658</isbn><eisbn>9781424495641</eisbn><eisbn>1424495660</eisbn><eisbn>9781424495665</eisbn><eisbn>1424495644</eisbn><abstract>In this paper, we explore the influence of band selection and dimensionality reduction of hyperspectral data on three point target detection algorithms. We wish to reduce the computational burden and to maximize the algorithms' performance by taking into consideration high spectral correlation. In order to measure the discrimination capability of target detection algorithms, we implemented a metric to quantitatively evaluate our algorithm for a particular combination of target signature, spectral cube, and bands chosen. Band selection was done in several ways; we evaluate our results both with exhaustive search and a "sub-optimal" selection algorithm.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2010.5653628</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-6996
ispartof 2010 IEEE International Geoscience and Remote Sensing Symposium, 2010, p.4761-4763
issn 2153-6996
2153-7003
language eng
recordid cdi_ieee_primary_5653628
source IEEE Electronic Library (IEL) Conference Proceedings
subjects band selection
Covariance matrix
Hyperspectral imaging
Hyperspectral imaging (HSI)
Image segmentation
Measurement
Object detection
Pixel
point target detection
Probability
title The impact of band selection on hyperspectral point target detection algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T23%3A58%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20impact%20of%20band%20selection%20on%20hyperspectral%20point%20target%20detection%20algorithms&rft.btitle=2010%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Rotman,%20S%20R&rft.date=2010-07&rft.spage=4761&rft.epage=4763&rft.pages=4761-4763&rft.issn=2153-6996&rft.eissn=2153-7003&rft.isbn=1424495652&rft.isbn_list=9781424495658&rft_id=info:doi/10.1109/IGARSS.2010.5653628&rft_dat=%3Cieee_6IE%3E5653628%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424495641&rft.eisbn_list=1424495660&rft.eisbn_list=9781424495665&rft.eisbn_list=1424495644&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5653628&rfr_iscdi=true