Automated recognition of obstructive sleep apnoea syndrome from ECG recordings
Obstructive sleep apnoea syndrome (OSAS) is a highly prevalent sleep disorder. The traditional diagnosis methods of the disorder are cumbersome and expensive. The ability to automatically identify OSAS from ECG recordings is important for clinical diagnosis and treatment. In this study, we presented...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100 |
---|---|
container_issue | |
container_start_page | 97 |
container_title | |
container_volume | |
creator | Yıldız, Abdulnasır Akın, Mehmet Poyraz, Mustafa |
description | Obstructive sleep apnoea syndrome (OSAS) is a highly prevalent sleep disorder. The traditional diagnosis methods of the disorder are cumbersome and expensive. The ability to automatically identify OSAS from ECG recordings is important for clinical diagnosis and treatment. In this study, we presented a system for the automatic recognition of patients with OSA from nocturnal electrocardiogram (ECG) recordings. The presented OSA recognition system comprises of three stages. In the first stage, an algorithm based on DWT was used to analyze ECG recordings for detection ECG-derived respiration (EDR) changes. In the second stage, a FFT based Power spectral density method was used for feature extraction from EDR changes. In the third stage, using a least squares support vector machine (LS-SVM) classifier; normal subjects were separated from subjects with OSA based on obtained features. Using 10 fold cross validation method, the accuracy of proposed system was found 96.7%. The results confirmed that the presented system can aid sleep specialists in the initial assessment of patients with suspected OSA. |
doi_str_mv | 10.1109/SIU.2010.5652784 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5652784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5652784</ieee_id><sourcerecordid>5652784</sourcerecordid><originalsourceid>FETCH-ieee_primary_56527843</originalsourceid><addsrcrecordid>eNp9jz1PwzAURR8FpJaSHYnFfyCtn5O8xCOqysfCUpgrt3mpjBo7sl2k_nsiVFaWe3R1dIcL8IBygSj1cvP2uVBybBVVqm7KK8h03WCpylJTjTSBmSJd5AUhXcPdn1B4MwqkKpckmylkMX5JKZEaVWg1g_enU_K9SdyKwHt_cDZZ74TvhN_FFE77ZL9ZxCPzIMzgPBsRz64NvmfRjSnWq5ffZWitO8R7uO3MMXJ24Rwen9cfq9fcMvN2CLY34by9XCj-tz9uPETH</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automated recognition of obstructive sleep apnoea syndrome from ECG recordings</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yıldız, Abdulnasır ; Akın, Mehmet ; Poyraz, Mustafa</creator><creatorcontrib>Yıldız, Abdulnasır ; Akın, Mehmet ; Poyraz, Mustafa</creatorcontrib><description>Obstructive sleep apnoea syndrome (OSAS) is a highly prevalent sleep disorder. The traditional diagnosis methods of the disorder are cumbersome and expensive. The ability to automatically identify OSAS from ECG recordings is important for clinical diagnosis and treatment. In this study, we presented a system for the automatic recognition of patients with OSA from nocturnal electrocardiogram (ECG) recordings. The presented OSA recognition system comprises of three stages. In the first stage, an algorithm based on DWT was used to analyze ECG recordings for detection ECG-derived respiration (EDR) changes. In the second stage, a FFT based Power spectral density method was used for feature extraction from EDR changes. In the third stage, using a least squares support vector machine (LS-SVM) classifier; normal subjects were separated from subjects with OSA based on obtained features. Using 10 fold cross validation method, the accuracy of proposed system was found 96.7%. The results confirmed that the presented system can aid sleep specialists in the initial assessment of patients with suspected OSA.</description><identifier>ISSN: 2165-0608</identifier><identifier>ISBN: 1424496721</identifier><identifier>ISBN: 9781424496723</identifier><identifier>EISSN: 2693-3616</identifier><identifier>EISBN: 9781424496716</identifier><identifier>EISBN: 1424496713</identifier><identifier>EISBN: 9781424496709</identifier><identifier>EISBN: 1424496705</identifier><identifier>DOI: 10.1109/SIU.2010.5652784</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cardiology ; Classification algorithms ; Computers ; Electrocardiography ; Sleep apnea ; Support vector machines</subject><ispartof>2010 IEEE 18th Signal Processing and Communications Applications Conference, 2010, p.97-100</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5652784$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5652784$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yıldız, Abdulnasır</creatorcontrib><creatorcontrib>Akın, Mehmet</creatorcontrib><creatorcontrib>Poyraz, Mustafa</creatorcontrib><title>Automated recognition of obstructive sleep apnoea syndrome from ECG recordings</title><title>2010 IEEE 18th Signal Processing and Communications Applications Conference</title><addtitle>SIU</addtitle><description>Obstructive sleep apnoea syndrome (OSAS) is a highly prevalent sleep disorder. The traditional diagnosis methods of the disorder are cumbersome and expensive. The ability to automatically identify OSAS from ECG recordings is important for clinical diagnosis and treatment. In this study, we presented a system for the automatic recognition of patients with OSA from nocturnal electrocardiogram (ECG) recordings. The presented OSA recognition system comprises of three stages. In the first stage, an algorithm based on DWT was used to analyze ECG recordings for detection ECG-derived respiration (EDR) changes. In the second stage, a FFT based Power spectral density method was used for feature extraction from EDR changes. In the third stage, using a least squares support vector machine (LS-SVM) classifier; normal subjects were separated from subjects with OSA based on obtained features. Using 10 fold cross validation method, the accuracy of proposed system was found 96.7%. The results confirmed that the presented system can aid sleep specialists in the initial assessment of patients with suspected OSA.</description><subject>Cardiology</subject><subject>Classification algorithms</subject><subject>Computers</subject><subject>Electrocardiography</subject><subject>Sleep apnea</subject><subject>Support vector machines</subject><issn>2165-0608</issn><issn>2693-3616</issn><isbn>1424496721</isbn><isbn>9781424496723</isbn><isbn>9781424496716</isbn><isbn>1424496713</isbn><isbn>9781424496709</isbn><isbn>1424496705</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jz1PwzAURR8FpJaSHYnFfyCtn5O8xCOqysfCUpgrt3mpjBo7sl2k_nsiVFaWe3R1dIcL8IBygSj1cvP2uVBybBVVqm7KK8h03WCpylJTjTSBmSJd5AUhXcPdn1B4MwqkKpckmylkMX5JKZEaVWg1g_enU_K9SdyKwHt_cDZZ74TvhN_FFE77ZL9ZxCPzIMzgPBsRz64NvmfRjSnWq5ffZWitO8R7uO3MMXJ24Rwen9cfq9fcMvN2CLY34by9XCj-tz9uPETH</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Yıldız, Abdulnasır</creator><creator>Akın, Mehmet</creator><creator>Poyraz, Mustafa</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201004</creationdate><title>Automated recognition of obstructive sleep apnoea syndrome from ECG recordings</title><author>Yıldız, Abdulnasır ; Akın, Mehmet ; Poyraz, Mustafa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_56527843</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cardiology</topic><topic>Classification algorithms</topic><topic>Computers</topic><topic>Electrocardiography</topic><topic>Sleep apnea</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Yıldız, Abdulnasır</creatorcontrib><creatorcontrib>Akın, Mehmet</creatorcontrib><creatorcontrib>Poyraz, Mustafa</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yıldız, Abdulnasır</au><au>Akın, Mehmet</au><au>Poyraz, Mustafa</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automated recognition of obstructive sleep apnoea syndrome from ECG recordings</atitle><btitle>2010 IEEE 18th Signal Processing and Communications Applications Conference</btitle><stitle>SIU</stitle><date>2010-04</date><risdate>2010</risdate><spage>97</spage><epage>100</epage><pages>97-100</pages><issn>2165-0608</issn><eissn>2693-3616</eissn><isbn>1424496721</isbn><isbn>9781424496723</isbn><eisbn>9781424496716</eisbn><eisbn>1424496713</eisbn><eisbn>9781424496709</eisbn><eisbn>1424496705</eisbn><abstract>Obstructive sleep apnoea syndrome (OSAS) is a highly prevalent sleep disorder. The traditional diagnosis methods of the disorder are cumbersome and expensive. The ability to automatically identify OSAS from ECG recordings is important for clinical diagnosis and treatment. In this study, we presented a system for the automatic recognition of patients with OSA from nocturnal electrocardiogram (ECG) recordings. The presented OSA recognition system comprises of three stages. In the first stage, an algorithm based on DWT was used to analyze ECG recordings for detection ECG-derived respiration (EDR) changes. In the second stage, a FFT based Power spectral density method was used for feature extraction from EDR changes. In the third stage, using a least squares support vector machine (LS-SVM) classifier; normal subjects were separated from subjects with OSA based on obtained features. Using 10 fold cross validation method, the accuracy of proposed system was found 96.7%. The results confirmed that the presented system can aid sleep specialists in the initial assessment of patients with suspected OSA.</abstract><pub>IEEE</pub><doi>10.1109/SIU.2010.5652784</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2165-0608 |
ispartof | 2010 IEEE 18th Signal Processing and Communications Applications Conference, 2010, p.97-100 |
issn | 2165-0608 2693-3616 |
language | eng |
recordid | cdi_ieee_primary_5652784 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cardiology Classification algorithms Computers Electrocardiography Sleep apnea Support vector machines |
title | Automated recognition of obstructive sleep apnoea syndrome from ECG recordings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automated%20recognition%20of%20obstructive%20sleep%20apnoea%20syndrome%20from%20ECG%20recordings&rft.btitle=2010%20IEEE%2018th%20Signal%20Processing%20and%20Communications%20Applications%20Conference&rft.au=Y%C4%B1ld%C4%B1z,%20Abdulnas%C4%B1r&rft.date=2010-04&rft.spage=97&rft.epage=100&rft.pages=97-100&rft.issn=2165-0608&rft.eissn=2693-3616&rft.isbn=1424496721&rft.isbn_list=9781424496723&rft_id=info:doi/10.1109/SIU.2010.5652784&rft_dat=%3Cieee_6IE%3E5652784%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424496716&rft.eisbn_list=1424496713&rft.eisbn_list=9781424496709&rft.eisbn_list=1424496705&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5652784&rfr_iscdi=true |