Automated recognition of obstructive sleep apnoea syndrome from ECG recordings

Obstructive sleep apnoea syndrome (OSAS) is a highly prevalent sleep disorder. The traditional diagnosis methods of the disorder are cumbersome and expensive. The ability to automatically identify OSAS from ECG recordings is important for clinical diagnosis and treatment. In this study, we presented...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yıldız, Abdulnasır, Akın, Mehmet, Poyraz, Mustafa
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100
container_issue
container_start_page 97
container_title
container_volume
creator Yıldız, Abdulnasır
Akın, Mehmet
Poyraz, Mustafa
description Obstructive sleep apnoea syndrome (OSAS) is a highly prevalent sleep disorder. The traditional diagnosis methods of the disorder are cumbersome and expensive. The ability to automatically identify OSAS from ECG recordings is important for clinical diagnosis and treatment. In this study, we presented a system for the automatic recognition of patients with OSA from nocturnal electrocardiogram (ECG) recordings. The presented OSA recognition system comprises of three stages. In the first stage, an algorithm based on DWT was used to analyze ECG recordings for detection ECG-derived respiration (EDR) changes. In the second stage, a FFT based Power spectral density method was used for feature extraction from EDR changes. In the third stage, using a least squares support vector machine (LS-SVM) classifier; normal subjects were separated from subjects with OSA based on obtained features. Using 10 fold cross validation method, the accuracy of proposed system was found 96.7%. The results confirmed that the presented system can aid sleep specialists in the initial assessment of patients with suspected OSA.
doi_str_mv 10.1109/SIU.2010.5652784
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5652784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5652784</ieee_id><sourcerecordid>5652784</sourcerecordid><originalsourceid>FETCH-ieee_primary_56527843</originalsourceid><addsrcrecordid>eNp9jz1PwzAURR8FpJaSHYnFfyCtn5O8xCOqysfCUpgrt3mpjBo7sl2k_nsiVFaWe3R1dIcL8IBygSj1cvP2uVBybBVVqm7KK8h03WCpylJTjTSBmSJd5AUhXcPdn1B4MwqkKpckmylkMX5JKZEaVWg1g_enU_K9SdyKwHt_cDZZ74TvhN_FFE77ZL9ZxCPzIMzgPBsRz64NvmfRjSnWq5ffZWitO8R7uO3MMXJ24Rwen9cfq9fcMvN2CLY34by9XCj-tz9uPETH</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automated recognition of obstructive sleep apnoea syndrome from ECG recordings</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yıldız, Abdulnasır ; Akın, Mehmet ; Poyraz, Mustafa</creator><creatorcontrib>Yıldız, Abdulnasır ; Akın, Mehmet ; Poyraz, Mustafa</creatorcontrib><description>Obstructive sleep apnoea syndrome (OSAS) is a highly prevalent sleep disorder. The traditional diagnosis methods of the disorder are cumbersome and expensive. The ability to automatically identify OSAS from ECG recordings is important for clinical diagnosis and treatment. In this study, we presented a system for the automatic recognition of patients with OSA from nocturnal electrocardiogram (ECG) recordings. The presented OSA recognition system comprises of three stages. In the first stage, an algorithm based on DWT was used to analyze ECG recordings for detection ECG-derived respiration (EDR) changes. In the second stage, a FFT based Power spectral density method was used for feature extraction from EDR changes. In the third stage, using a least squares support vector machine (LS-SVM) classifier; normal subjects were separated from subjects with OSA based on obtained features. Using 10 fold cross validation method, the accuracy of proposed system was found 96.7%. The results confirmed that the presented system can aid sleep specialists in the initial assessment of patients with suspected OSA.</description><identifier>ISSN: 2165-0608</identifier><identifier>ISBN: 1424496721</identifier><identifier>ISBN: 9781424496723</identifier><identifier>EISSN: 2693-3616</identifier><identifier>EISBN: 9781424496716</identifier><identifier>EISBN: 1424496713</identifier><identifier>EISBN: 9781424496709</identifier><identifier>EISBN: 1424496705</identifier><identifier>DOI: 10.1109/SIU.2010.5652784</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cardiology ; Classification algorithms ; Computers ; Electrocardiography ; Sleep apnea ; Support vector machines</subject><ispartof>2010 IEEE 18th Signal Processing and Communications Applications Conference, 2010, p.97-100</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5652784$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5652784$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yıldız, Abdulnasır</creatorcontrib><creatorcontrib>Akın, Mehmet</creatorcontrib><creatorcontrib>Poyraz, Mustafa</creatorcontrib><title>Automated recognition of obstructive sleep apnoea syndrome from ECG recordings</title><title>2010 IEEE 18th Signal Processing and Communications Applications Conference</title><addtitle>SIU</addtitle><description>Obstructive sleep apnoea syndrome (OSAS) is a highly prevalent sleep disorder. The traditional diagnosis methods of the disorder are cumbersome and expensive. The ability to automatically identify OSAS from ECG recordings is important for clinical diagnosis and treatment. In this study, we presented a system for the automatic recognition of patients with OSA from nocturnal electrocardiogram (ECG) recordings. The presented OSA recognition system comprises of three stages. In the first stage, an algorithm based on DWT was used to analyze ECG recordings for detection ECG-derived respiration (EDR) changes. In the second stage, a FFT based Power spectral density method was used for feature extraction from EDR changes. In the third stage, using a least squares support vector machine (LS-SVM) classifier; normal subjects were separated from subjects with OSA based on obtained features. Using 10 fold cross validation method, the accuracy of proposed system was found 96.7%. The results confirmed that the presented system can aid sleep specialists in the initial assessment of patients with suspected OSA.</description><subject>Cardiology</subject><subject>Classification algorithms</subject><subject>Computers</subject><subject>Electrocardiography</subject><subject>Sleep apnea</subject><subject>Support vector machines</subject><issn>2165-0608</issn><issn>2693-3616</issn><isbn>1424496721</isbn><isbn>9781424496723</isbn><isbn>9781424496716</isbn><isbn>1424496713</isbn><isbn>9781424496709</isbn><isbn>1424496705</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jz1PwzAURR8FpJaSHYnFfyCtn5O8xCOqysfCUpgrt3mpjBo7sl2k_nsiVFaWe3R1dIcL8IBygSj1cvP2uVBybBVVqm7KK8h03WCpylJTjTSBmSJd5AUhXcPdn1B4MwqkKpckmylkMX5JKZEaVWg1g_enU_K9SdyKwHt_cDZZ74TvhN_FFE77ZL9ZxCPzIMzgPBsRz64NvmfRjSnWq5ffZWitO8R7uO3MMXJ24Rwen9cfq9fcMvN2CLY34by9XCj-tz9uPETH</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Yıldız, Abdulnasır</creator><creator>Akın, Mehmet</creator><creator>Poyraz, Mustafa</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201004</creationdate><title>Automated recognition of obstructive sleep apnoea syndrome from ECG recordings</title><author>Yıldız, Abdulnasır ; Akın, Mehmet ; Poyraz, Mustafa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_56527843</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cardiology</topic><topic>Classification algorithms</topic><topic>Computers</topic><topic>Electrocardiography</topic><topic>Sleep apnea</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Yıldız, Abdulnasır</creatorcontrib><creatorcontrib>Akın, Mehmet</creatorcontrib><creatorcontrib>Poyraz, Mustafa</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yıldız, Abdulnasır</au><au>Akın, Mehmet</au><au>Poyraz, Mustafa</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automated recognition of obstructive sleep apnoea syndrome from ECG recordings</atitle><btitle>2010 IEEE 18th Signal Processing and Communications Applications Conference</btitle><stitle>SIU</stitle><date>2010-04</date><risdate>2010</risdate><spage>97</spage><epage>100</epage><pages>97-100</pages><issn>2165-0608</issn><eissn>2693-3616</eissn><isbn>1424496721</isbn><isbn>9781424496723</isbn><eisbn>9781424496716</eisbn><eisbn>1424496713</eisbn><eisbn>9781424496709</eisbn><eisbn>1424496705</eisbn><abstract>Obstructive sleep apnoea syndrome (OSAS) is a highly prevalent sleep disorder. The traditional diagnosis methods of the disorder are cumbersome and expensive. The ability to automatically identify OSAS from ECG recordings is important for clinical diagnosis and treatment. In this study, we presented a system for the automatic recognition of patients with OSA from nocturnal electrocardiogram (ECG) recordings. The presented OSA recognition system comprises of three stages. In the first stage, an algorithm based on DWT was used to analyze ECG recordings for detection ECG-derived respiration (EDR) changes. In the second stage, a FFT based Power spectral density method was used for feature extraction from EDR changes. In the third stage, using a least squares support vector machine (LS-SVM) classifier; normal subjects were separated from subjects with OSA based on obtained features. Using 10 fold cross validation method, the accuracy of proposed system was found 96.7%. The results confirmed that the presented system can aid sleep specialists in the initial assessment of patients with suspected OSA.</abstract><pub>IEEE</pub><doi>10.1109/SIU.2010.5652784</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2165-0608
ispartof 2010 IEEE 18th Signal Processing and Communications Applications Conference, 2010, p.97-100
issn 2165-0608
2693-3616
language eng
recordid cdi_ieee_primary_5652784
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cardiology
Classification algorithms
Computers
Electrocardiography
Sleep apnea
Support vector machines
title Automated recognition of obstructive sleep apnoea syndrome from ECG recordings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automated%20recognition%20of%20obstructive%20sleep%20apnoea%20syndrome%20from%20ECG%20recordings&rft.btitle=2010%20IEEE%2018th%20Signal%20Processing%20and%20Communications%20Applications%20Conference&rft.au=Y%C4%B1ld%C4%B1z,%20Abdulnas%C4%B1r&rft.date=2010-04&rft.spage=97&rft.epage=100&rft.pages=97-100&rft.issn=2165-0608&rft.eissn=2693-3616&rft.isbn=1424496721&rft.isbn_list=9781424496723&rft_id=info:doi/10.1109/SIU.2010.5652784&rft_dat=%3Cieee_6IE%3E5652784%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424496716&rft.eisbn_list=1424496713&rft.eisbn_list=9781424496709&rft.eisbn_list=1424496705&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5652784&rfr_iscdi=true