Matching of interest point groups with pairwise spatial constraints
We present an algorithm for finding robust matches between images by considering the spatial constraints between pairs of interest points. By considering these constraints, we account for the layout and structure of features during matching, which produces more robust matches compared to the common...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2696 |
---|---|
container_issue | |
container_start_page | 2693 |
container_title | |
container_volume | |
creator | Ng, E S Kingsbury, N G |
description | We present an algorithm for finding robust matches between images by considering the spatial constraints between pairs of interest points. By considering these constraints, we account for the layout and structure of features during matching, which produces more robust matches compared to the common approach of using local feature appearance for matching alone. We calculate the similarity between interest point pairs based on a set of spatial constraints. Matches are then found by searching for pairs which satisfy these constraints in a similarity space. Our results show that the algorithm produces more robust matches compared to baseline SIFT matching and spectral graph matching, with correspondence ratios up to 33% and 28% higher (respectively) across various viewpoints of the test objects while the computational load is only increased by about 25% over baseline SIFT. The algorithm may also be used with other feature descriptors apart from SIFT. |
doi_str_mv | 10.1109/ICIP.2010.5651903 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5651903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5651903</ieee_id><sourcerecordid>5651903</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-84f9c9cf373f3320daa0f7d199aacf712b2b0dfac43ee6b7419dabd0313a63233</originalsourceid><addsrcrecordid>eNpVkMtOwzAURM1LIpR-AGLjH0jx9XVie4kiHpGKYAHr6iaxW6OSRLFRxd8TiW5YzYxmdBbD2A2IFYCwd3VVv62kmGNRFmAFnrCl1QaUVEpbq8wpyyQayE2h7Nm_TqpzlkEhZa6MEZfsKsZPIWYWQsaqF0rtLvRbPnge-uQmFxMfh9ny7TR8j5EfQtrxkcJ0CNHxOFIKtOft0Mc00byL1-zC0z665VEX7OPx4b16ztevT3V1v84D6CLlRnnb2tajRo8oRUckvO7AWqLWa5CNbETnqVXoXNloBbajphMISCVKxAW7_eMG59xmnMIXTT-b4x_4C9e5ULU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Matching of interest point groups with pairwise spatial constraints</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ng, E S ; Kingsbury, N G</creator><creatorcontrib>Ng, E S ; Kingsbury, N G</creatorcontrib><description>We present an algorithm for finding robust matches between images by considering the spatial constraints between pairs of interest points. By considering these constraints, we account for the layout and structure of features during matching, which produces more robust matches compared to the common approach of using local feature appearance for matching alone. We calculate the similarity between interest point pairs based on a set of spatial constraints. Matches are then found by searching for pairs which satisfy these constraints in a similarity space. Our results show that the algorithm produces more robust matches compared to baseline SIFT matching and spectral graph matching, with correspondence ratios up to 33% and 28% higher (respectively) across various viewpoints of the test objects while the computational load is only increased by about 25% over baseline SIFT. The algorithm may also be used with other feature descriptors apart from SIFT.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424479924</identifier><identifier>ISBN: 1424479924</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424479948</identifier><identifier>EISBN: 1424479940</identifier><identifier>EISBN: 1424479932</identifier><identifier>EISBN: 9781424479931</identifier><identifier>DOI: 10.1109/ICIP.2010.5651903</identifier><language>eng</language><publisher>IEEE</publisher><subject>Buildings ; Computational complexity ; Computer vision ; Object matching ; Robustness ; Shape ; SIFT ; Signal processing algorithms ; Spatial constraints</subject><ispartof>2010 IEEE International Conference on Image Processing, 2010, p.2693-2696</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5651903$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27903,54897</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5651903$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ng, E S</creatorcontrib><creatorcontrib>Kingsbury, N G</creatorcontrib><title>Matching of interest point groups with pairwise spatial constraints</title><title>2010 IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>We present an algorithm for finding robust matches between images by considering the spatial constraints between pairs of interest points. By considering these constraints, we account for the layout and structure of features during matching, which produces more robust matches compared to the common approach of using local feature appearance for matching alone. We calculate the similarity between interest point pairs based on a set of spatial constraints. Matches are then found by searching for pairs which satisfy these constraints in a similarity space. Our results show that the algorithm produces more robust matches compared to baseline SIFT matching and spectral graph matching, with correspondence ratios up to 33% and 28% higher (respectively) across various viewpoints of the test objects while the computational load is only increased by about 25% over baseline SIFT. The algorithm may also be used with other feature descriptors apart from SIFT.</description><subject>Buildings</subject><subject>Computational complexity</subject><subject>Computer vision</subject><subject>Object matching</subject><subject>Robustness</subject><subject>Shape</subject><subject>SIFT</subject><subject>Signal processing algorithms</subject><subject>Spatial constraints</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424479924</isbn><isbn>1424479924</isbn><isbn>9781424479948</isbn><isbn>1424479940</isbn><isbn>1424479932</isbn><isbn>9781424479931</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtOwzAURM1LIpR-AGLjH0jx9XVie4kiHpGKYAHr6iaxW6OSRLFRxd8TiW5YzYxmdBbD2A2IFYCwd3VVv62kmGNRFmAFnrCl1QaUVEpbq8wpyyQayE2h7Nm_TqpzlkEhZa6MEZfsKsZPIWYWQsaqF0rtLvRbPnge-uQmFxMfh9ny7TR8j5EfQtrxkcJ0CNHxOFIKtOft0Mc00byL1-zC0z665VEX7OPx4b16ztevT3V1v84D6CLlRnnb2tajRo8oRUckvO7AWqLWa5CNbETnqVXoXNloBbajphMISCVKxAW7_eMG59xmnMIXTT-b4x_4C9e5ULU</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Ng, E S</creator><creator>Kingsbury, N G</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201009</creationdate><title>Matching of interest point groups with pairwise spatial constraints</title><author>Ng, E S ; Kingsbury, N G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-84f9c9cf373f3320daa0f7d199aacf712b2b0dfac43ee6b7419dabd0313a63233</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Buildings</topic><topic>Computational complexity</topic><topic>Computer vision</topic><topic>Object matching</topic><topic>Robustness</topic><topic>Shape</topic><topic>SIFT</topic><topic>Signal processing algorithms</topic><topic>Spatial constraints</topic><toplevel>online_resources</toplevel><creatorcontrib>Ng, E S</creatorcontrib><creatorcontrib>Kingsbury, N G</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ng, E S</au><au>Kingsbury, N G</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Matching of interest point groups with pairwise spatial constraints</atitle><btitle>2010 IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2010-09</date><risdate>2010</risdate><spage>2693</spage><epage>2696</epage><pages>2693-2696</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424479924</isbn><isbn>1424479924</isbn><eisbn>9781424479948</eisbn><eisbn>1424479940</eisbn><eisbn>1424479932</eisbn><eisbn>9781424479931</eisbn><abstract>We present an algorithm for finding robust matches between images by considering the spatial constraints between pairs of interest points. By considering these constraints, we account for the layout and structure of features during matching, which produces more robust matches compared to the common approach of using local feature appearance for matching alone. We calculate the similarity between interest point pairs based on a set of spatial constraints. Matches are then found by searching for pairs which satisfy these constraints in a similarity space. Our results show that the algorithm produces more robust matches compared to baseline SIFT matching and spectral graph matching, with correspondence ratios up to 33% and 28% higher (respectively) across various viewpoints of the test objects while the computational load is only increased by about 25% over baseline SIFT. The algorithm may also be used with other feature descriptors apart from SIFT.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2010.5651903</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | 2010 IEEE International Conference on Image Processing, 2010, p.2693-2696 |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_5651903 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Buildings Computational complexity Computer vision Object matching Robustness Shape SIFT Signal processing algorithms Spatial constraints |
title | Matching of interest point groups with pairwise spatial constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Matching%20of%20interest%20point%20groups%20with%20pairwise%20spatial%20constraints&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Ng,%20E%20S&rft.date=2010-09&rft.spage=2693&rft.epage=2696&rft.pages=2693-2696&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424479924&rft.isbn_list=1424479924&rft_id=info:doi/10.1109/ICIP.2010.5651903&rft_dat=%3Cieee_6IE%3E5651903%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424479948&rft.eisbn_list=1424479940&rft.eisbn_list=1424479932&rft.eisbn_list=9781424479931&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5651903&rfr_iscdi=true |