Matching of interest point groups with pairwise spatial constraints

We present an algorithm for finding robust matches between images by considering the spatial constraints between pairs of interest points. By considering these constraints, we account for the layout and structure of features during matching, which produces more robust matches compared to the common...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ng, E S, Kingsbury, N G
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2696
container_issue
container_start_page 2693
container_title
container_volume
creator Ng, E S
Kingsbury, N G
description We present an algorithm for finding robust matches between images by considering the spatial constraints between pairs of interest points. By considering these constraints, we account for the layout and structure of features during matching, which produces more robust matches compared to the common approach of using local feature appearance for matching alone. We calculate the similarity between interest point pairs based on a set of spatial constraints. Matches are then found by searching for pairs which satisfy these constraints in a similarity space. Our results show that the algorithm produces more robust matches compared to baseline SIFT matching and spectral graph matching, with correspondence ratios up to 33% and 28% higher (respectively) across various viewpoints of the test objects while the computational load is only increased by about 25% over baseline SIFT. The algorithm may also be used with other feature descriptors apart from SIFT.
doi_str_mv 10.1109/ICIP.2010.5651903
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5651903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5651903</ieee_id><sourcerecordid>5651903</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-84f9c9cf373f3320daa0f7d199aacf712b2b0dfac43ee6b7419dabd0313a63233</originalsourceid><addsrcrecordid>eNpVkMtOwzAURM1LIpR-AGLjH0jx9XVie4kiHpGKYAHr6iaxW6OSRLFRxd8TiW5YzYxmdBbD2A2IFYCwd3VVv62kmGNRFmAFnrCl1QaUVEpbq8wpyyQayE2h7Nm_TqpzlkEhZa6MEZfsKsZPIWYWQsaqF0rtLvRbPnge-uQmFxMfh9ny7TR8j5EfQtrxkcJ0CNHxOFIKtOft0Mc00byL1-zC0z665VEX7OPx4b16ztevT3V1v84D6CLlRnnb2tajRo8oRUckvO7AWqLWa5CNbETnqVXoXNloBbajphMISCVKxAW7_eMG59xmnMIXTT-b4x_4C9e5ULU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Matching of interest point groups with pairwise spatial constraints</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ng, E S ; Kingsbury, N G</creator><creatorcontrib>Ng, E S ; Kingsbury, N G</creatorcontrib><description>We present an algorithm for finding robust matches between images by considering the spatial constraints between pairs of interest points. By considering these constraints, we account for the layout and structure of features during matching, which produces more robust matches compared to the common approach of using local feature appearance for matching alone. We calculate the similarity between interest point pairs based on a set of spatial constraints. Matches are then found by searching for pairs which satisfy these constraints in a similarity space. Our results show that the algorithm produces more robust matches compared to baseline SIFT matching and spectral graph matching, with correspondence ratios up to 33% and 28% higher (respectively) across various viewpoints of the test objects while the computational load is only increased by about 25% over baseline SIFT. The algorithm may also be used with other feature descriptors apart from SIFT.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424479924</identifier><identifier>ISBN: 1424479924</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424479948</identifier><identifier>EISBN: 1424479940</identifier><identifier>EISBN: 1424479932</identifier><identifier>EISBN: 9781424479931</identifier><identifier>DOI: 10.1109/ICIP.2010.5651903</identifier><language>eng</language><publisher>IEEE</publisher><subject>Buildings ; Computational complexity ; Computer vision ; Object matching ; Robustness ; Shape ; SIFT ; Signal processing algorithms ; Spatial constraints</subject><ispartof>2010 IEEE International Conference on Image Processing, 2010, p.2693-2696</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5651903$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27903,54897</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5651903$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ng, E S</creatorcontrib><creatorcontrib>Kingsbury, N G</creatorcontrib><title>Matching of interest point groups with pairwise spatial constraints</title><title>2010 IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>We present an algorithm for finding robust matches between images by considering the spatial constraints between pairs of interest points. By considering these constraints, we account for the layout and structure of features during matching, which produces more robust matches compared to the common approach of using local feature appearance for matching alone. We calculate the similarity between interest point pairs based on a set of spatial constraints. Matches are then found by searching for pairs which satisfy these constraints in a similarity space. Our results show that the algorithm produces more robust matches compared to baseline SIFT matching and spectral graph matching, with correspondence ratios up to 33% and 28% higher (respectively) across various viewpoints of the test objects while the computational load is only increased by about 25% over baseline SIFT. The algorithm may also be used with other feature descriptors apart from SIFT.</description><subject>Buildings</subject><subject>Computational complexity</subject><subject>Computer vision</subject><subject>Object matching</subject><subject>Robustness</subject><subject>Shape</subject><subject>SIFT</subject><subject>Signal processing algorithms</subject><subject>Spatial constraints</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424479924</isbn><isbn>1424479924</isbn><isbn>9781424479948</isbn><isbn>1424479940</isbn><isbn>1424479932</isbn><isbn>9781424479931</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtOwzAURM1LIpR-AGLjH0jx9XVie4kiHpGKYAHr6iaxW6OSRLFRxd8TiW5YzYxmdBbD2A2IFYCwd3VVv62kmGNRFmAFnrCl1QaUVEpbq8wpyyQayE2h7Nm_TqpzlkEhZa6MEZfsKsZPIWYWQsaqF0rtLvRbPnge-uQmFxMfh9ny7TR8j5EfQtrxkcJ0CNHxOFIKtOft0Mc00byL1-zC0z665VEX7OPx4b16ztevT3V1v84D6CLlRnnb2tajRo8oRUckvO7AWqLWa5CNbETnqVXoXNloBbajphMISCVKxAW7_eMG59xmnMIXTT-b4x_4C9e5ULU</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Ng, E S</creator><creator>Kingsbury, N G</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201009</creationdate><title>Matching of interest point groups with pairwise spatial constraints</title><author>Ng, E S ; Kingsbury, N G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-84f9c9cf373f3320daa0f7d199aacf712b2b0dfac43ee6b7419dabd0313a63233</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Buildings</topic><topic>Computational complexity</topic><topic>Computer vision</topic><topic>Object matching</topic><topic>Robustness</topic><topic>Shape</topic><topic>SIFT</topic><topic>Signal processing algorithms</topic><topic>Spatial constraints</topic><toplevel>online_resources</toplevel><creatorcontrib>Ng, E S</creatorcontrib><creatorcontrib>Kingsbury, N G</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ng, E S</au><au>Kingsbury, N G</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Matching of interest point groups with pairwise spatial constraints</atitle><btitle>2010 IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2010-09</date><risdate>2010</risdate><spage>2693</spage><epage>2696</epage><pages>2693-2696</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424479924</isbn><isbn>1424479924</isbn><eisbn>9781424479948</eisbn><eisbn>1424479940</eisbn><eisbn>1424479932</eisbn><eisbn>9781424479931</eisbn><abstract>We present an algorithm for finding robust matches between images by considering the spatial constraints between pairs of interest points. By considering these constraints, we account for the layout and structure of features during matching, which produces more robust matches compared to the common approach of using local feature appearance for matching alone. We calculate the similarity between interest point pairs based on a set of spatial constraints. Matches are then found by searching for pairs which satisfy these constraints in a similarity space. Our results show that the algorithm produces more robust matches compared to baseline SIFT matching and spectral graph matching, with correspondence ratios up to 33% and 28% higher (respectively) across various viewpoints of the test objects while the computational load is only increased by about 25% over baseline SIFT. The algorithm may also be used with other feature descriptors apart from SIFT.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2010.5651903</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2010 IEEE International Conference on Image Processing, 2010, p.2693-2696
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_5651903
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Buildings
Computational complexity
Computer vision
Object matching
Robustness
Shape
SIFT
Signal processing algorithms
Spatial constraints
title Matching of interest point groups with pairwise spatial constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Matching%20of%20interest%20point%20groups%20with%20pairwise%20spatial%20constraints&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Ng,%20E%20S&rft.date=2010-09&rft.spage=2693&rft.epage=2696&rft.pages=2693-2696&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424479924&rft.isbn_list=1424479924&rft_id=info:doi/10.1109/ICIP.2010.5651903&rft_dat=%3Cieee_6IE%3E5651903%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424479948&rft.eisbn_list=1424479940&rft.eisbn_list=1424479932&rft.eisbn_list=9781424479931&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5651903&rfr_iscdi=true