Implementation and optimization of image processing algorithms on handheld GPU

The advent of GPUs with programmable shaders on handheld devices has motivated embedded application developers to utilize GPU to offload computationally intensive tasks and relieve the burden from embedded CPU. In this work, we propose an image processing toolkit on handheld GPU with programmable sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Singhal, N, In Kyu Park, Sungdae Cho
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4484
container_issue
container_start_page 4481
container_title
container_volume
creator Singhal, N
In Kyu Park
Sungdae Cho
description The advent of GPUs with programmable shaders on handheld devices has motivated embedded application developers to utilize GPU to offload computationally intensive tasks and relieve the burden from embedded CPU. In this work, we propose an image processing toolkit on handheld GPU with programmable shaders using OpenGL ES 2.0 API. By using the image processing toolkit, we show that a range of image processing algorithms map readily to handheld GPU. We employ real-time video scaling, cartoon-style non-photorealistic rendering, and Harris corner detector as our example applications. In addition, we propose techniques to achieve increased performance with optimized shader design and efficient sharing of GPU workload between vertex and fragment shaders. Performance is evaluated in terms of frames per second at varying video stream resolution.
doi_str_mv 10.1109/ICIP.2010.5651740
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5651740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5651740</ieee_id><sourcerecordid>5651740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-d120b820c0ffb2301df5d08a26ca79b035a77194301d416ca04742d8b80b95933</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhM2fRCl9AMTFL5CyXtu1fUQRlEgV9EDPlRM7iVH-FOcCT09Qe-G02pnZT6sh5IHBmjEwT1ma7dcI8yo3kikBF2RllGYChVDGCH1JFsg1S7QU5uqfh-KaLJhETITWcEvuYvwCmFmcLch71g6Nb3032Sn0HbWdo_0whTb8nIS-pKG1lafD2Bc-xtBV1DZVP4apbiOdE_V8U_vG0e3-cE9uSttEvzrPJTm8vnymb8nuY5ulz7ukQORT4hhCrhEKKMscOTBXSgfa4qawyuTApVWKGfHnCDaLIJRAp3MNuZGG8yV5PHGD9_44jPOL4_fxXA3_BWH-Uro</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Implementation and optimization of image processing algorithms on handheld GPU</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Singhal, N ; In Kyu Park ; Sungdae Cho</creator><creatorcontrib>Singhal, N ; In Kyu Park ; Sungdae Cho</creatorcontrib><description>The advent of GPUs with programmable shaders on handheld devices has motivated embedded application developers to utilize GPU to offload computationally intensive tasks and relieve the burden from embedded CPU. In this work, we propose an image processing toolkit on handheld GPU with programmable shaders using OpenGL ES 2.0 API. By using the image processing toolkit, we show that a range of image processing algorithms map readily to handheld GPU. We employ real-time video scaling, cartoon-style non-photorealistic rendering, and Harris corner detector as our example applications. In addition, we propose techniques to achieve increased performance with optimized shader design and efficient sharing of GPU workload between vertex and fragment shaders. Performance is evaluated in terms of frames per second at varying video stream resolution.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424479924</identifier><identifier>ISBN: 1424479924</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424479948</identifier><identifier>EISBN: 1424479940</identifier><identifier>EISBN: 1424479932</identifier><identifier>EISBN: 9781424479931</identifier><identifier>DOI: 10.1109/ICIP.2010.5651740</identifier><language>eng</language><publisher>IEEE</publisher><subject>GPGPU ; GPU ; Graphics processing unit ; Image color analysis ; mobile computing ; mobile devices ; OpenGL ES 2.0 ; Pixel ; Real time systems ; Rendering (computer graphics) ; Streaming media</subject><ispartof>2010 IEEE International Conference on Image Processing, 2010, p.4481-4484</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-d120b820c0ffb2301df5d08a26ca79b035a77194301d416ca04742d8b80b95933</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5651740$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5651740$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Singhal, N</creatorcontrib><creatorcontrib>In Kyu Park</creatorcontrib><creatorcontrib>Sungdae Cho</creatorcontrib><title>Implementation and optimization of image processing algorithms on handheld GPU</title><title>2010 IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>The advent of GPUs with programmable shaders on handheld devices has motivated embedded application developers to utilize GPU to offload computationally intensive tasks and relieve the burden from embedded CPU. In this work, we propose an image processing toolkit on handheld GPU with programmable shaders using OpenGL ES 2.0 API. By using the image processing toolkit, we show that a range of image processing algorithms map readily to handheld GPU. We employ real-time video scaling, cartoon-style non-photorealistic rendering, and Harris corner detector as our example applications. In addition, we propose techniques to achieve increased performance with optimized shader design and efficient sharing of GPU workload between vertex and fragment shaders. Performance is evaluated in terms of frames per second at varying video stream resolution.</description><subject>GPGPU</subject><subject>GPU</subject><subject>Graphics processing unit</subject><subject>Image color analysis</subject><subject>mobile computing</subject><subject>mobile devices</subject><subject>OpenGL ES 2.0</subject><subject>Pixel</subject><subject>Real time systems</subject><subject>Rendering (computer graphics)</subject><subject>Streaming media</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424479924</isbn><isbn>1424479924</isbn><isbn>9781424479948</isbn><isbn>1424479940</isbn><isbn>1424479932</isbn><isbn>9781424479931</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1OwzAQhM2fRCl9AMTFL5CyXtu1fUQRlEgV9EDPlRM7iVH-FOcCT09Qe-G02pnZT6sh5IHBmjEwT1ma7dcI8yo3kikBF2RllGYChVDGCH1JFsg1S7QU5uqfh-KaLJhETITWcEvuYvwCmFmcLch71g6Nb3032Sn0HbWdo_0whTb8nIS-pKG1lafD2Bc-xtBV1DZVP4apbiOdE_V8U_vG0e3-cE9uSttEvzrPJTm8vnymb8nuY5ulz7ukQORT4hhCrhEKKMscOTBXSgfa4qawyuTApVWKGfHnCDaLIJRAp3MNuZGG8yV5PHGD9_44jPOL4_fxXA3_BWH-Uro</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Singhal, N</creator><creator>In Kyu Park</creator><creator>Sungdae Cho</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201009</creationdate><title>Implementation and optimization of image processing algorithms on handheld GPU</title><author>Singhal, N ; In Kyu Park ; Sungdae Cho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-d120b820c0ffb2301df5d08a26ca79b035a77194301d416ca04742d8b80b95933</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>GPGPU</topic><topic>GPU</topic><topic>Graphics processing unit</topic><topic>Image color analysis</topic><topic>mobile computing</topic><topic>mobile devices</topic><topic>OpenGL ES 2.0</topic><topic>Pixel</topic><topic>Real time systems</topic><topic>Rendering (computer graphics)</topic><topic>Streaming media</topic><toplevel>online_resources</toplevel><creatorcontrib>Singhal, N</creatorcontrib><creatorcontrib>In Kyu Park</creatorcontrib><creatorcontrib>Sungdae Cho</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Singhal, N</au><au>In Kyu Park</au><au>Sungdae Cho</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Implementation and optimization of image processing algorithms on handheld GPU</atitle><btitle>2010 IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2010-09</date><risdate>2010</risdate><spage>4481</spage><epage>4484</epage><pages>4481-4484</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424479924</isbn><isbn>1424479924</isbn><eisbn>9781424479948</eisbn><eisbn>1424479940</eisbn><eisbn>1424479932</eisbn><eisbn>9781424479931</eisbn><abstract>The advent of GPUs with programmable shaders on handheld devices has motivated embedded application developers to utilize GPU to offload computationally intensive tasks and relieve the burden from embedded CPU. In this work, we propose an image processing toolkit on handheld GPU with programmable shaders using OpenGL ES 2.0 API. By using the image processing toolkit, we show that a range of image processing algorithms map readily to handheld GPU. We employ real-time video scaling, cartoon-style non-photorealistic rendering, and Harris corner detector as our example applications. In addition, we propose techniques to achieve increased performance with optimized shader design and efficient sharing of GPU workload between vertex and fragment shaders. Performance is evaluated in terms of frames per second at varying video stream resolution.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2010.5651740</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2010 IEEE International Conference on Image Processing, 2010, p.4481-4484
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_5651740
source IEEE Electronic Library (IEL) Conference Proceedings
subjects GPGPU
GPU
Graphics processing unit
Image color analysis
mobile computing
mobile devices
OpenGL ES 2.0
Pixel
Real time systems
Rendering (computer graphics)
Streaming media
title Implementation and optimization of image processing algorithms on handheld GPU
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A15%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Implementation%20and%20optimization%20of%20image%20processing%20algorithms%20on%20handheld%20GPU&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Singhal,%20N&rft.date=2010-09&rft.spage=4481&rft.epage=4484&rft.pages=4481-4484&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424479924&rft.isbn_list=1424479924&rft_id=info:doi/10.1109/ICIP.2010.5651740&rft_dat=%3Cieee_6IE%3E5651740%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424479948&rft.eisbn_list=1424479940&rft.eisbn_list=1424479932&rft.eisbn_list=9781424479931&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5651740&rfr_iscdi=true