Implementation and optimization of image processing algorithms on handheld GPU
The advent of GPUs with programmable shaders on handheld devices has motivated embedded application developers to utilize GPU to offload computationally intensive tasks and relieve the burden from embedded CPU. In this work, we propose an image processing toolkit on handheld GPU with programmable sh...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4484 |
---|---|
container_issue | |
container_start_page | 4481 |
container_title | |
container_volume | |
creator | Singhal, N In Kyu Park Sungdae Cho |
description | The advent of GPUs with programmable shaders on handheld devices has motivated embedded application developers to utilize GPU to offload computationally intensive tasks and relieve the burden from embedded CPU. In this work, we propose an image processing toolkit on handheld GPU with programmable shaders using OpenGL ES 2.0 API. By using the image processing toolkit, we show that a range of image processing algorithms map readily to handheld GPU. We employ real-time video scaling, cartoon-style non-photorealistic rendering, and Harris corner detector as our example applications. In addition, we propose techniques to achieve increased performance with optimized shader design and efficient sharing of GPU workload between vertex and fragment shaders. Performance is evaluated in terms of frames per second at varying video stream resolution. |
doi_str_mv | 10.1109/ICIP.2010.5651740 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5651740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5651740</ieee_id><sourcerecordid>5651740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-d120b820c0ffb2301df5d08a26ca79b035a77194301d416ca04742d8b80b95933</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhM2fRCl9AMTFL5CyXtu1fUQRlEgV9EDPlRM7iVH-FOcCT09Qe-G02pnZT6sh5IHBmjEwT1ma7dcI8yo3kikBF2RllGYChVDGCH1JFsg1S7QU5uqfh-KaLJhETITWcEvuYvwCmFmcLch71g6Nb3032Sn0HbWdo_0whTb8nIS-pKG1lafD2Bc-xtBV1DZVP4apbiOdE_V8U_vG0e3-cE9uSttEvzrPJTm8vnymb8nuY5ulz7ukQORT4hhCrhEKKMscOTBXSgfa4qawyuTApVWKGfHnCDaLIJRAp3MNuZGG8yV5PHGD9_44jPOL4_fxXA3_BWH-Uro</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Implementation and optimization of image processing algorithms on handheld GPU</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Singhal, N ; In Kyu Park ; Sungdae Cho</creator><creatorcontrib>Singhal, N ; In Kyu Park ; Sungdae Cho</creatorcontrib><description>The advent of GPUs with programmable shaders on handheld devices has motivated embedded application developers to utilize GPU to offload computationally intensive tasks and relieve the burden from embedded CPU. In this work, we propose an image processing toolkit on handheld GPU with programmable shaders using OpenGL ES 2.0 API. By using the image processing toolkit, we show that a range of image processing algorithms map readily to handheld GPU. We employ real-time video scaling, cartoon-style non-photorealistic rendering, and Harris corner detector as our example applications. In addition, we propose techniques to achieve increased performance with optimized shader design and efficient sharing of GPU workload between vertex and fragment shaders. Performance is evaluated in terms of frames per second at varying video stream resolution.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424479924</identifier><identifier>ISBN: 1424479924</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424479948</identifier><identifier>EISBN: 1424479940</identifier><identifier>EISBN: 1424479932</identifier><identifier>EISBN: 9781424479931</identifier><identifier>DOI: 10.1109/ICIP.2010.5651740</identifier><language>eng</language><publisher>IEEE</publisher><subject>GPGPU ; GPU ; Graphics processing unit ; Image color analysis ; mobile computing ; mobile devices ; OpenGL ES 2.0 ; Pixel ; Real time systems ; Rendering (computer graphics) ; Streaming media</subject><ispartof>2010 IEEE International Conference on Image Processing, 2010, p.4481-4484</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-d120b820c0ffb2301df5d08a26ca79b035a77194301d416ca04742d8b80b95933</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5651740$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5651740$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Singhal, N</creatorcontrib><creatorcontrib>In Kyu Park</creatorcontrib><creatorcontrib>Sungdae Cho</creatorcontrib><title>Implementation and optimization of image processing algorithms on handheld GPU</title><title>2010 IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>The advent of GPUs with programmable shaders on handheld devices has motivated embedded application developers to utilize GPU to offload computationally intensive tasks and relieve the burden from embedded CPU. In this work, we propose an image processing toolkit on handheld GPU with programmable shaders using OpenGL ES 2.0 API. By using the image processing toolkit, we show that a range of image processing algorithms map readily to handheld GPU. We employ real-time video scaling, cartoon-style non-photorealistic rendering, and Harris corner detector as our example applications. In addition, we propose techniques to achieve increased performance with optimized shader design and efficient sharing of GPU workload between vertex and fragment shaders. Performance is evaluated in terms of frames per second at varying video stream resolution.</description><subject>GPGPU</subject><subject>GPU</subject><subject>Graphics processing unit</subject><subject>Image color analysis</subject><subject>mobile computing</subject><subject>mobile devices</subject><subject>OpenGL ES 2.0</subject><subject>Pixel</subject><subject>Real time systems</subject><subject>Rendering (computer graphics)</subject><subject>Streaming media</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424479924</isbn><isbn>1424479924</isbn><isbn>9781424479948</isbn><isbn>1424479940</isbn><isbn>1424479932</isbn><isbn>9781424479931</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1OwzAQhM2fRCl9AMTFL5CyXtu1fUQRlEgV9EDPlRM7iVH-FOcCT09Qe-G02pnZT6sh5IHBmjEwT1ma7dcI8yo3kikBF2RllGYChVDGCH1JFsg1S7QU5uqfh-KaLJhETITWcEvuYvwCmFmcLch71g6Nb3032Sn0HbWdo_0whTb8nIS-pKG1lafD2Bc-xtBV1DZVP4apbiOdE_V8U_vG0e3-cE9uSttEvzrPJTm8vnymb8nuY5ulz7ukQORT4hhCrhEKKMscOTBXSgfa4qawyuTApVWKGfHnCDaLIJRAp3MNuZGG8yV5PHGD9_44jPOL4_fxXA3_BWH-Uro</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Singhal, N</creator><creator>In Kyu Park</creator><creator>Sungdae Cho</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201009</creationdate><title>Implementation and optimization of image processing algorithms on handheld GPU</title><author>Singhal, N ; In Kyu Park ; Sungdae Cho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-d120b820c0ffb2301df5d08a26ca79b035a77194301d416ca04742d8b80b95933</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>GPGPU</topic><topic>GPU</topic><topic>Graphics processing unit</topic><topic>Image color analysis</topic><topic>mobile computing</topic><topic>mobile devices</topic><topic>OpenGL ES 2.0</topic><topic>Pixel</topic><topic>Real time systems</topic><topic>Rendering (computer graphics)</topic><topic>Streaming media</topic><toplevel>online_resources</toplevel><creatorcontrib>Singhal, N</creatorcontrib><creatorcontrib>In Kyu Park</creatorcontrib><creatorcontrib>Sungdae Cho</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Singhal, N</au><au>In Kyu Park</au><au>Sungdae Cho</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Implementation and optimization of image processing algorithms on handheld GPU</atitle><btitle>2010 IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2010-09</date><risdate>2010</risdate><spage>4481</spage><epage>4484</epage><pages>4481-4484</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424479924</isbn><isbn>1424479924</isbn><eisbn>9781424479948</eisbn><eisbn>1424479940</eisbn><eisbn>1424479932</eisbn><eisbn>9781424479931</eisbn><abstract>The advent of GPUs with programmable shaders on handheld devices has motivated embedded application developers to utilize GPU to offload computationally intensive tasks and relieve the burden from embedded CPU. In this work, we propose an image processing toolkit on handheld GPU with programmable shaders using OpenGL ES 2.0 API. By using the image processing toolkit, we show that a range of image processing algorithms map readily to handheld GPU. We employ real-time video scaling, cartoon-style non-photorealistic rendering, and Harris corner detector as our example applications. In addition, we propose techniques to achieve increased performance with optimized shader design and efficient sharing of GPU workload between vertex and fragment shaders. Performance is evaluated in terms of frames per second at varying video stream resolution.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2010.5651740</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | 2010 IEEE International Conference on Image Processing, 2010, p.4481-4484 |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_5651740 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | GPGPU GPU Graphics processing unit Image color analysis mobile computing mobile devices OpenGL ES 2.0 Pixel Real time systems Rendering (computer graphics) Streaming media |
title | Implementation and optimization of image processing algorithms on handheld GPU |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A15%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Implementation%20and%20optimization%20of%20image%20processing%20algorithms%20on%20handheld%20GPU&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Singhal,%20N&rft.date=2010-09&rft.spage=4481&rft.epage=4484&rft.pages=4481-4484&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424479924&rft.isbn_list=1424479924&rft_id=info:doi/10.1109/ICIP.2010.5651740&rft_dat=%3Cieee_6IE%3E5651740%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424479948&rft.eisbn_list=1424479940&rft.eisbn_list=1424479932&rft.eisbn_list=9781424479931&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5651740&rfr_iscdi=true |