Bayesian regularization of diffusion tensor images using hierarchical MCMC and loopy belief propagation
Based on the theory of Markov Random Fields, a Bayesian regularization model for diffusion tensor images (DTI) is proposed in this paper. The low-degree parameterization of diffusion tensors in our model makes it less computationally intensive to obtain a maximum a posteriori (MAP) estimation. An ap...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 68 |
---|---|
container_issue | |
container_start_page | 65 |
container_title | |
container_volume | |
creator | Siming Wei Jing Hua Jiajun Bu Chun Chen Yizhou Yu |
description | Based on the theory of Markov Random Fields, a Bayesian regularization model for diffusion tensor images (DTI) is proposed in this paper. The low-degree parameterization of diffusion tensors in our model makes it less computationally intensive to obtain a maximum a posteriori (MAP) estimation. An approximate solution to the problem is achieved efficiently using hierarchical Markov Chain Monte Carlo (HMCMC), and a loopy belief propagation algorithm is applied to a coarse grid to obtain a good initial solution for hierarchical MCMC. Experiments on synthetic and real data demonstrate the effectiveness of our methods. |
doi_str_mv | 10.1109/ICIP.2010.5651519 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5651519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5651519</ieee_id><sourcerecordid>5651519</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-6a61a6a3dc653de9d374b03fb2a5cb862c4843f7c9a2050a9d02f1fda3a556df3</originalsourceid><addsrcrecordid>eNpVkEtOwzAYhM1LopQeALHxBVL8jr2EqEClVrCAdfUntlOjkER2uginJ0A3rEYzI30aDUI3lCwpJeZuXaxfl4xMVipJJTUnaGFyTQUTIjdG6FM0Y1zTTEthzv51TJyjGZWMZUJrcomuUvogZGJxOkP1A4wuBWhxdPWhgRi-YAhdizuPbfD-kH7M4NrURRw-oXYJT1lb431wEWK1DxU0eFtsCwytxU3X9SMuXROcx33seqh_edfowkOT3OKoc_T-uHornrPNy9O6uN9kgVE9ZAoUBQXcVkpy64zluSgJ9yUDWZVasUpowX1eGWBEEjCWME-9BQ5SKuv5HN3-cYNzbtfHaXIcd8fP-Devql2U</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Bayesian regularization of diffusion tensor images using hierarchical MCMC and loopy belief propagation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Siming Wei ; Jing Hua ; Jiajun Bu ; Chun Chen ; Yizhou Yu</creator><creatorcontrib>Siming Wei ; Jing Hua ; Jiajun Bu ; Chun Chen ; Yizhou Yu</creatorcontrib><description>Based on the theory of Markov Random Fields, a Bayesian regularization model for diffusion tensor images (DTI) is proposed in this paper. The low-degree parameterization of diffusion tensors in our model makes it less computationally intensive to obtain a maximum a posteriori (MAP) estimation. An approximate solution to the problem is achieved efficiently using hierarchical Markov Chain Monte Carlo (HMCMC), and a loopy belief propagation algorithm is applied to a coarse grid to obtain a good initial solution for hierarchical MCMC. Experiments on synthetic and real data demonstrate the effectiveness of our methods.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424479924</identifier><identifier>ISBN: 1424479924</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424479948</identifier><identifier>EISBN: 1424479940</identifier><identifier>EISBN: 1424479932</identifier><identifier>EISBN: 9781424479931</identifier><identifier>DOI: 10.1109/ICIP.2010.5651519</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Bayesian Models ; Belief propagation ; Diffusion Tensor Images ; Diffusion tensor imaging ; Estimation ; Image Restoration ; Markov Chain Monte Carlo ; Markov processes ; Noise measurement ; Tensile stress</subject><ispartof>2010 IEEE International Conference on Image Processing, 2010, p.65-68</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5651519$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5651519$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Siming Wei</creatorcontrib><creatorcontrib>Jing Hua</creatorcontrib><creatorcontrib>Jiajun Bu</creatorcontrib><creatorcontrib>Chun Chen</creatorcontrib><creatorcontrib>Yizhou Yu</creatorcontrib><title>Bayesian regularization of diffusion tensor images using hierarchical MCMC and loopy belief propagation</title><title>2010 IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>Based on the theory of Markov Random Fields, a Bayesian regularization model for diffusion tensor images (DTI) is proposed in this paper. The low-degree parameterization of diffusion tensors in our model makes it less computationally intensive to obtain a maximum a posteriori (MAP) estimation. An approximate solution to the problem is achieved efficiently using hierarchical Markov Chain Monte Carlo (HMCMC), and a loopy belief propagation algorithm is applied to a coarse grid to obtain a good initial solution for hierarchical MCMC. Experiments on synthetic and real data demonstrate the effectiveness of our methods.</description><subject>Bayesian methods</subject><subject>Bayesian Models</subject><subject>Belief propagation</subject><subject>Diffusion Tensor Images</subject><subject>Diffusion tensor imaging</subject><subject>Estimation</subject><subject>Image Restoration</subject><subject>Markov Chain Monte Carlo</subject><subject>Markov processes</subject><subject>Noise measurement</subject><subject>Tensile stress</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424479924</isbn><isbn>1424479924</isbn><isbn>9781424479948</isbn><isbn>1424479940</isbn><isbn>1424479932</isbn><isbn>9781424479931</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkEtOwzAYhM1LopQeALHxBVL8jr2EqEClVrCAdfUntlOjkER2uginJ0A3rEYzI30aDUI3lCwpJeZuXaxfl4xMVipJJTUnaGFyTQUTIjdG6FM0Y1zTTEthzv51TJyjGZWMZUJrcomuUvogZGJxOkP1A4wuBWhxdPWhgRi-YAhdizuPbfD-kH7M4NrURRw-oXYJT1lb431wEWK1DxU0eFtsCwytxU3X9SMuXROcx33seqh_edfowkOT3OKoc_T-uHornrPNy9O6uN9kgVE9ZAoUBQXcVkpy64zluSgJ9yUDWZVasUpowX1eGWBEEjCWME-9BQ5SKuv5HN3-cYNzbtfHaXIcd8fP-Devql2U</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Siming Wei</creator><creator>Jing Hua</creator><creator>Jiajun Bu</creator><creator>Chun Chen</creator><creator>Yizhou Yu</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201009</creationdate><title>Bayesian regularization of diffusion tensor images using hierarchical MCMC and loopy belief propagation</title><author>Siming Wei ; Jing Hua ; Jiajun Bu ; Chun Chen ; Yizhou Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-6a61a6a3dc653de9d374b03fb2a5cb862c4843f7c9a2050a9d02f1fda3a556df3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bayesian methods</topic><topic>Bayesian Models</topic><topic>Belief propagation</topic><topic>Diffusion Tensor Images</topic><topic>Diffusion tensor imaging</topic><topic>Estimation</topic><topic>Image Restoration</topic><topic>Markov Chain Monte Carlo</topic><topic>Markov processes</topic><topic>Noise measurement</topic><topic>Tensile stress</topic><toplevel>online_resources</toplevel><creatorcontrib>Siming Wei</creatorcontrib><creatorcontrib>Jing Hua</creatorcontrib><creatorcontrib>Jiajun Bu</creatorcontrib><creatorcontrib>Chun Chen</creatorcontrib><creatorcontrib>Yizhou Yu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Siming Wei</au><au>Jing Hua</au><au>Jiajun Bu</au><au>Chun Chen</au><au>Yizhou Yu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bayesian regularization of diffusion tensor images using hierarchical MCMC and loopy belief propagation</atitle><btitle>2010 IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2010-09</date><risdate>2010</risdate><spage>65</spage><epage>68</epage><pages>65-68</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424479924</isbn><isbn>1424479924</isbn><eisbn>9781424479948</eisbn><eisbn>1424479940</eisbn><eisbn>1424479932</eisbn><eisbn>9781424479931</eisbn><abstract>Based on the theory of Markov Random Fields, a Bayesian regularization model for diffusion tensor images (DTI) is proposed in this paper. The low-degree parameterization of diffusion tensors in our model makes it less computationally intensive to obtain a maximum a posteriori (MAP) estimation. An approximate solution to the problem is achieved efficiently using hierarchical Markov Chain Monte Carlo (HMCMC), and a loopy belief propagation algorithm is applied to a coarse grid to obtain a good initial solution for hierarchical MCMC. Experiments on synthetic and real data demonstrate the effectiveness of our methods.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2010.5651519</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | 2010 IEEE International Conference on Image Processing, 2010, p.65-68 |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_5651519 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bayesian methods Bayesian Models Belief propagation Diffusion Tensor Images Diffusion tensor imaging Estimation Image Restoration Markov Chain Monte Carlo Markov processes Noise measurement Tensile stress |
title | Bayesian regularization of diffusion tensor images using hierarchical MCMC and loopy belief propagation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A45%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bayesian%20regularization%20of%20diffusion%20tensor%20images%20using%20hierarchical%20MCMC%20and%20loopy%20belief%20propagation&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Siming%20Wei&rft.date=2010-09&rft.spage=65&rft.epage=68&rft.pages=65-68&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424479924&rft.isbn_list=1424479924&rft_id=info:doi/10.1109/ICIP.2010.5651519&rft_dat=%3Cieee_6IE%3E5651519%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424479948&rft.eisbn_list=1424479940&rft.eisbn_list=1424479932&rft.eisbn_list=9781424479931&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5651519&rfr_iscdi=true |