Bayesian regularization of diffusion tensor images using hierarchical MCMC and loopy belief propagation

Based on the theory of Markov Random Fields, a Bayesian regularization model for diffusion tensor images (DTI) is proposed in this paper. The low-degree parameterization of diffusion tensors in our model makes it less computationally intensive to obtain a maximum a posteriori (MAP) estimation. An ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Siming Wei, Jing Hua, Jiajun Bu, Chun Chen, Yizhou Yu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue
container_start_page 65
container_title
container_volume
creator Siming Wei
Jing Hua
Jiajun Bu
Chun Chen
Yizhou Yu
description Based on the theory of Markov Random Fields, a Bayesian regularization model for diffusion tensor images (DTI) is proposed in this paper. The low-degree parameterization of diffusion tensors in our model makes it less computationally intensive to obtain a maximum a posteriori (MAP) estimation. An approximate solution to the problem is achieved efficiently using hierarchical Markov Chain Monte Carlo (HMCMC), and a loopy belief propagation algorithm is applied to a coarse grid to obtain a good initial solution for hierarchical MCMC. Experiments on synthetic and real data demonstrate the effectiveness of our methods.
doi_str_mv 10.1109/ICIP.2010.5651519
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5651519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5651519</ieee_id><sourcerecordid>5651519</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-6a61a6a3dc653de9d374b03fb2a5cb862c4843f7c9a2050a9d02f1fda3a556df3</originalsourceid><addsrcrecordid>eNpVkEtOwzAYhM1LopQeALHxBVL8jr2EqEClVrCAdfUntlOjkER2uginJ0A3rEYzI30aDUI3lCwpJeZuXaxfl4xMVipJJTUnaGFyTQUTIjdG6FM0Y1zTTEthzv51TJyjGZWMZUJrcomuUvogZGJxOkP1A4wuBWhxdPWhgRi-YAhdizuPbfD-kH7M4NrURRw-oXYJT1lb431wEWK1DxU0eFtsCwytxU3X9SMuXROcx33seqh_edfowkOT3OKoc_T-uHornrPNy9O6uN9kgVE9ZAoUBQXcVkpy64zluSgJ9yUDWZVasUpowX1eGWBEEjCWME-9BQ5SKuv5HN3-cYNzbtfHaXIcd8fP-Devql2U</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Bayesian regularization of diffusion tensor images using hierarchical MCMC and loopy belief propagation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Siming Wei ; Jing Hua ; Jiajun Bu ; Chun Chen ; Yizhou Yu</creator><creatorcontrib>Siming Wei ; Jing Hua ; Jiajun Bu ; Chun Chen ; Yizhou Yu</creatorcontrib><description>Based on the theory of Markov Random Fields, a Bayesian regularization model for diffusion tensor images (DTI) is proposed in this paper. The low-degree parameterization of diffusion tensors in our model makes it less computationally intensive to obtain a maximum a posteriori (MAP) estimation. An approximate solution to the problem is achieved efficiently using hierarchical Markov Chain Monte Carlo (HMCMC), and a loopy belief propagation algorithm is applied to a coarse grid to obtain a good initial solution for hierarchical MCMC. Experiments on synthetic and real data demonstrate the effectiveness of our methods.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424479924</identifier><identifier>ISBN: 1424479924</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424479948</identifier><identifier>EISBN: 1424479940</identifier><identifier>EISBN: 1424479932</identifier><identifier>EISBN: 9781424479931</identifier><identifier>DOI: 10.1109/ICIP.2010.5651519</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Bayesian Models ; Belief propagation ; Diffusion Tensor Images ; Diffusion tensor imaging ; Estimation ; Image Restoration ; Markov Chain Monte Carlo ; Markov processes ; Noise measurement ; Tensile stress</subject><ispartof>2010 IEEE International Conference on Image Processing, 2010, p.65-68</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5651519$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5651519$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Siming Wei</creatorcontrib><creatorcontrib>Jing Hua</creatorcontrib><creatorcontrib>Jiajun Bu</creatorcontrib><creatorcontrib>Chun Chen</creatorcontrib><creatorcontrib>Yizhou Yu</creatorcontrib><title>Bayesian regularization of diffusion tensor images using hierarchical MCMC and loopy belief propagation</title><title>2010 IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>Based on the theory of Markov Random Fields, a Bayesian regularization model for diffusion tensor images (DTI) is proposed in this paper. The low-degree parameterization of diffusion tensors in our model makes it less computationally intensive to obtain a maximum a posteriori (MAP) estimation. An approximate solution to the problem is achieved efficiently using hierarchical Markov Chain Monte Carlo (HMCMC), and a loopy belief propagation algorithm is applied to a coarse grid to obtain a good initial solution for hierarchical MCMC. Experiments on synthetic and real data demonstrate the effectiveness of our methods.</description><subject>Bayesian methods</subject><subject>Bayesian Models</subject><subject>Belief propagation</subject><subject>Diffusion Tensor Images</subject><subject>Diffusion tensor imaging</subject><subject>Estimation</subject><subject>Image Restoration</subject><subject>Markov Chain Monte Carlo</subject><subject>Markov processes</subject><subject>Noise measurement</subject><subject>Tensile stress</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424479924</isbn><isbn>1424479924</isbn><isbn>9781424479948</isbn><isbn>1424479940</isbn><isbn>1424479932</isbn><isbn>9781424479931</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkEtOwzAYhM1LopQeALHxBVL8jr2EqEClVrCAdfUntlOjkER2uginJ0A3rEYzI30aDUI3lCwpJeZuXaxfl4xMVipJJTUnaGFyTQUTIjdG6FM0Y1zTTEthzv51TJyjGZWMZUJrcomuUvogZGJxOkP1A4wuBWhxdPWhgRi-YAhdizuPbfD-kH7M4NrURRw-oXYJT1lb431wEWK1DxU0eFtsCwytxU3X9SMuXROcx33seqh_edfowkOT3OKoc_T-uHornrPNy9O6uN9kgVE9ZAoUBQXcVkpy64zluSgJ9yUDWZVasUpowX1eGWBEEjCWME-9BQ5SKuv5HN3-cYNzbtfHaXIcd8fP-Devql2U</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Siming Wei</creator><creator>Jing Hua</creator><creator>Jiajun Bu</creator><creator>Chun Chen</creator><creator>Yizhou Yu</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201009</creationdate><title>Bayesian regularization of diffusion tensor images using hierarchical MCMC and loopy belief propagation</title><author>Siming Wei ; Jing Hua ; Jiajun Bu ; Chun Chen ; Yizhou Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-6a61a6a3dc653de9d374b03fb2a5cb862c4843f7c9a2050a9d02f1fda3a556df3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bayesian methods</topic><topic>Bayesian Models</topic><topic>Belief propagation</topic><topic>Diffusion Tensor Images</topic><topic>Diffusion tensor imaging</topic><topic>Estimation</topic><topic>Image Restoration</topic><topic>Markov Chain Monte Carlo</topic><topic>Markov processes</topic><topic>Noise measurement</topic><topic>Tensile stress</topic><toplevel>online_resources</toplevel><creatorcontrib>Siming Wei</creatorcontrib><creatorcontrib>Jing Hua</creatorcontrib><creatorcontrib>Jiajun Bu</creatorcontrib><creatorcontrib>Chun Chen</creatorcontrib><creatorcontrib>Yizhou Yu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Siming Wei</au><au>Jing Hua</au><au>Jiajun Bu</au><au>Chun Chen</au><au>Yizhou Yu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bayesian regularization of diffusion tensor images using hierarchical MCMC and loopy belief propagation</atitle><btitle>2010 IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2010-09</date><risdate>2010</risdate><spage>65</spage><epage>68</epage><pages>65-68</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424479924</isbn><isbn>1424479924</isbn><eisbn>9781424479948</eisbn><eisbn>1424479940</eisbn><eisbn>1424479932</eisbn><eisbn>9781424479931</eisbn><abstract>Based on the theory of Markov Random Fields, a Bayesian regularization model for diffusion tensor images (DTI) is proposed in this paper. The low-degree parameterization of diffusion tensors in our model makes it less computationally intensive to obtain a maximum a posteriori (MAP) estimation. An approximate solution to the problem is achieved efficiently using hierarchical Markov Chain Monte Carlo (HMCMC), and a loopy belief propagation algorithm is applied to a coarse grid to obtain a good initial solution for hierarchical MCMC. Experiments on synthetic and real data demonstrate the effectiveness of our methods.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2010.5651519</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2010 IEEE International Conference on Image Processing, 2010, p.65-68
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_5651519
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Bayesian Models
Belief propagation
Diffusion Tensor Images
Diffusion tensor imaging
Estimation
Image Restoration
Markov Chain Monte Carlo
Markov processes
Noise measurement
Tensile stress
title Bayesian regularization of diffusion tensor images using hierarchical MCMC and loopy belief propagation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A45%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bayesian%20regularization%20of%20diffusion%20tensor%20images%20using%20hierarchical%20MCMC%20and%20loopy%20belief%20propagation&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Siming%20Wei&rft.date=2010-09&rft.spage=65&rft.epage=68&rft.pages=65-68&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424479924&rft.isbn_list=1424479924&rft_id=info:doi/10.1109/ICIP.2010.5651519&rft_dat=%3Cieee_6IE%3E5651519%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424479948&rft.eisbn_list=1424479940&rft.eisbn_list=1424479932&rft.eisbn_list=9781424479931&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5651519&rfr_iscdi=true