Image deconvolution using multigrid natural image prior and its applications

The natural image prior has been proven to be a powerful tool for image deblurring in recent years, though its performance against noise in various applications has not been thoroughly studied. In this paper, we present a multigrid natural image prior for image deconvolution that enhances its robust...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tingbo Hou, Sen Wang, Hong Qin, Miller, R L
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3572
container_issue
container_start_page 3569
container_title
container_volume
creator Tingbo Hou
Sen Wang
Hong Qin
Miller, R L
description The natural image prior has been proven to be a powerful tool for image deblurring in recent years, though its performance against noise in various applications has not been thoroughly studied. In this paper, we present a multigrid natural image prior for image deconvolution that enhances its robustness against noise, and afford three applications of image deconvolution using this prior: deblurring, super-resolution, and denoising. The prior is based on a remarkable property of natural images that derivatives with different resolutions are subject to the same heavy-tailed distribution with a spatial factor. It can serve in both blind and non-blind deconvolutions. The performances of the proposed prior in different applications are demonstrated by corresponding experimental results.
doi_str_mv 10.1109/ICIP.2010.5651083
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5651083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5651083</ieee_id><sourcerecordid>5651083</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-ddf74fe4e347bacf61724f271628cfaf222fcf46c6ea845a3b174da9077b029d3</originalsourceid><addsrcrecordid>eNpVUMlOwzAUNJtEKf0AxMU_kGI_v8T2EVUskSLBAc7Va2xXRtkUJ0j8PQV64TQazaLRMHYjxVpKYe_KTfm6BnGgeZFLYdQJW1ltJAKithbNKVuAMjIzOdqzfxrgOVvIHCBDY8Qlu0rpQ4hDl5ILVpUt7T13vu67z76Zp9h3fE6x2_N2bqa4H6PjHU3zSA2Pv95hjP3IqXM8TonTMDSxpp9cumYXgZrkV0dcsvfHh7fNc1a9PJWb-yqLIM2UORc0Bo9eod5RHQqpAQNoWYCpAwUACHXAoi48GcxJ7aRGR1ZovRNgnVqy27_e6L3fHva0NH5tj8eobytdU9s</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Image deconvolution using multigrid natural image prior and its applications</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tingbo Hou ; Sen Wang ; Hong Qin ; Miller, R L</creator><creatorcontrib>Tingbo Hou ; Sen Wang ; Hong Qin ; Miller, R L</creatorcontrib><description>The natural image prior has been proven to be a powerful tool for image deblurring in recent years, though its performance against noise in various applications has not been thoroughly studied. In this paper, we present a multigrid natural image prior for image deconvolution that enhances its robustness against noise, and afford three applications of image deconvolution using this prior: deblurring, super-resolution, and denoising. The prior is based on a remarkable property of natural images that derivatives with different resolutions are subject to the same heavy-tailed distribution with a spatial factor. It can serve in both blind and non-blind deconvolutions. The performances of the proposed prior in different applications are demonstrated by corresponding experimental results.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424479924</identifier><identifier>ISBN: 1424479924</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424479948</identifier><identifier>EISBN: 1424479940</identifier><identifier>EISBN: 1424479932</identifier><identifier>EISBN: 9781424479931</identifier><identifier>DOI: 10.1109/ICIP.2010.5651083</identifier><language>eng</language><publisher>IEEE</publisher><subject>Deconvolution ; Image deblurring ; image denoising ; Image resolution ; Kernel ; natural image prior ; Noise reduction ; Pixel ; PSNR ; super-resolution</subject><ispartof>2010 IEEE International Conference on Image Processing, 2010, p.3569-3572</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5651083$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5651083$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tingbo Hou</creatorcontrib><creatorcontrib>Sen Wang</creatorcontrib><creatorcontrib>Hong Qin</creatorcontrib><creatorcontrib>Miller, R L</creatorcontrib><title>Image deconvolution using multigrid natural image prior and its applications</title><title>2010 IEEE International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>The natural image prior has been proven to be a powerful tool for image deblurring in recent years, though its performance against noise in various applications has not been thoroughly studied. In this paper, we present a multigrid natural image prior for image deconvolution that enhances its robustness against noise, and afford three applications of image deconvolution using this prior: deblurring, super-resolution, and denoising. The prior is based on a remarkable property of natural images that derivatives with different resolutions are subject to the same heavy-tailed distribution with a spatial factor. It can serve in both blind and non-blind deconvolutions. The performances of the proposed prior in different applications are demonstrated by corresponding experimental results.</description><subject>Deconvolution</subject><subject>Image deblurring</subject><subject>image denoising</subject><subject>Image resolution</subject><subject>Kernel</subject><subject>natural image prior</subject><subject>Noise reduction</subject><subject>Pixel</subject><subject>PSNR</subject><subject>super-resolution</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424479924</isbn><isbn>1424479924</isbn><isbn>9781424479948</isbn><isbn>1424479940</isbn><isbn>1424479932</isbn><isbn>9781424479931</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUMlOwzAUNJtEKf0AxMU_kGI_v8T2EVUskSLBAc7Va2xXRtkUJ0j8PQV64TQazaLRMHYjxVpKYe_KTfm6BnGgeZFLYdQJW1ltJAKithbNKVuAMjIzOdqzfxrgOVvIHCBDY8Qlu0rpQ4hDl5ILVpUt7T13vu67z76Zp9h3fE6x2_N2bqa4H6PjHU3zSA2Pv95hjP3IqXM8TonTMDSxpp9cumYXgZrkV0dcsvfHh7fNc1a9PJWb-yqLIM2UORc0Bo9eod5RHQqpAQNoWYCpAwUACHXAoi48GcxJ7aRGR1ZovRNgnVqy27_e6L3fHva0NH5tj8eobytdU9s</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Tingbo Hou</creator><creator>Sen Wang</creator><creator>Hong Qin</creator><creator>Miller, R L</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20100101</creationdate><title>Image deconvolution using multigrid natural image prior and its applications</title><author>Tingbo Hou ; Sen Wang ; Hong Qin ; Miller, R L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-ddf74fe4e347bacf61724f271628cfaf222fcf46c6ea845a3b174da9077b029d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Deconvolution</topic><topic>Image deblurring</topic><topic>image denoising</topic><topic>Image resolution</topic><topic>Kernel</topic><topic>natural image prior</topic><topic>Noise reduction</topic><topic>Pixel</topic><topic>PSNR</topic><topic>super-resolution</topic><toplevel>online_resources</toplevel><creatorcontrib>Tingbo Hou</creatorcontrib><creatorcontrib>Sen Wang</creatorcontrib><creatorcontrib>Hong Qin</creatorcontrib><creatorcontrib>Miller, R L</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tingbo Hou</au><au>Sen Wang</au><au>Hong Qin</au><au>Miller, R L</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Image deconvolution using multigrid natural image prior and its applications</atitle><btitle>2010 IEEE International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2010-01-01</date><risdate>2010</risdate><spage>3569</spage><epage>3572</epage><pages>3569-3572</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424479924</isbn><isbn>1424479924</isbn><eisbn>9781424479948</eisbn><eisbn>1424479940</eisbn><eisbn>1424479932</eisbn><eisbn>9781424479931</eisbn><abstract>The natural image prior has been proven to be a powerful tool for image deblurring in recent years, though its performance against noise in various applications has not been thoroughly studied. In this paper, we present a multigrid natural image prior for image deconvolution that enhances its robustness against noise, and afford three applications of image deconvolution using this prior: deblurring, super-resolution, and denoising. The prior is based on a remarkable property of natural images that derivatives with different resolutions are subject to the same heavy-tailed distribution with a spatial factor. It can serve in both blind and non-blind deconvolutions. The performances of the proposed prior in different applications are demonstrated by corresponding experimental results.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2010.5651083</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2010 IEEE International Conference on Image Processing, 2010, p.3569-3572
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_5651083
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Deconvolution
Image deblurring
image denoising
Image resolution
Kernel
natural image prior
Noise reduction
Pixel
PSNR
super-resolution
title Image deconvolution using multigrid natural image prior and its applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Image%20deconvolution%20using%20multigrid%20natural%20image%20prior%20and%20its%20applications&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Image%20Processing&rft.au=Tingbo%20Hou&rft.date=2010-01-01&rft.spage=3569&rft.epage=3572&rft.pages=3569-3572&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424479924&rft.isbn_list=1424479924&rft_id=info:doi/10.1109/ICIP.2010.5651083&rft_dat=%3Cieee_6IE%3E5651083%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424479948&rft.eisbn_list=1424479940&rft.eisbn_list=1424479932&rft.eisbn_list=9781424479931&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5651083&rfr_iscdi=true