Holistic design and analysis for the human-friendly robotic co-worker

In this overview paper we present current work on safety analysis for physical Human-Robot Interaction (pHRI) and motion control methods for robotic co-workers. In particular, we introduce the analysis tools for investigating the potential injury a human would suffer during robot-human impacts. Furt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Haddadin, S, Parusel, S, Belder, R, Vogel, J, Rokahr, T, Albu-Schäffer, A, Hirzinger, G
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4742
container_issue
container_start_page 4735
container_title
container_volume
creator Haddadin, S
Parusel, S
Belder, R
Vogel, J
Rokahr, T
Albu-Schäffer, A
Hirzinger, G
description In this overview paper we present current work on safety analysis for physical Human-Robot Interaction (pHRI) and motion control methods for robotic co-workers. In particular, we introduce the analysis tools for investigating the potential injury a human would suffer during robot-human impacts. Furthermore, we outline our concept for establishing a procedure towards standardized crash testing in robotics with automobile crash-test dummies. Since it is only possible to investigate blunt impacts with these devices, we developed a drop testing setup for analyzing soft-tissue injury in robotics from a biomechanics perspective. In the second part of the paper, some of our methods for task preserving and task relaxing motion schemes are described, which enable collision avoidance in real-time. The algorithms are well suited to work in an integrated fashion with the soft robotics control developed for the DLR Lightweight Robot III (LWR-III). In addition, it is shown how the torque sensing capabilities of the robot can be used to support reactive motion schemes. Finally, an overview of our human-friendly control architecture for the LWR-III is given, which unifies the rich bundle of developed methods for this manipulator.
doi_str_mv 10.1109/IROS.2010.5650636
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5650636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5650636</ieee_id><sourcerecordid>5650636</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3e820398bcf260990ca1979ef1719e9afea3f61b6745d6342d59ac8c9f3fb82e3</originalsourceid><addsrcrecordid>eNpVUNtKw0AUXG9gqfkA8WV_IHXv2fMopdpCoeDluWw2Z-1qmshuRPr3RiyCD8MwDDMMQ8g1ZzPOGdyuHjdPM8FGqY1mRpoTUkBluRJKGVMZdUomgmtZMmvM2T9PsfM_T9tLUuT8xthYVYEFMyGLZd_GPERPG8zxtaOua0a49pBjpqFPdNgh3X3uXVeGFLFr2gNNfd3_RHxffvXpHdMVuQiuzVgceUpe7hfP82W53jys5nfrMvJKD6VEK5gEW_sgDANg3nGoAAOvOCC4gE4Gw-txtm6MVKLR4Lz1EGSorUA5JTe_vRERtx8p7l06bI-nyG-5SlDx</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Holistic design and analysis for the human-friendly robotic co-worker</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Haddadin, S ; Parusel, S ; Belder, R ; Vogel, J ; Rokahr, T ; Albu-Schäffer, A ; Hirzinger, G</creator><creatorcontrib>Haddadin, S ; Parusel, S ; Belder, R ; Vogel, J ; Rokahr, T ; Albu-Schäffer, A ; Hirzinger, G</creatorcontrib><description>In this overview paper we present current work on safety analysis for physical Human-Robot Interaction (pHRI) and motion control methods for robotic co-workers. In particular, we introduce the analysis tools for investigating the potential injury a human would suffer during robot-human impacts. Furthermore, we outline our concept for establishing a procedure towards standardized crash testing in robotics with automobile crash-test dummies. Since it is only possible to investigate blunt impacts with these devices, we developed a drop testing setup for analyzing soft-tissue injury in robotics from a biomechanics perspective. In the second part of the paper, some of our methods for task preserving and task relaxing motion schemes are described, which enable collision avoidance in real-time. The algorithms are well suited to work in an integrated fashion with the soft robotics control developed for the DLR Lightweight Robot III (LWR-III). In addition, it is shown how the torque sensing capabilities of the robot can be used to support reactive motion schemes. Finally, an overview of our human-friendly control architecture for the LWR-III is given, which unifies the rich bundle of developed methods for this manipulator.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 9781424466740</identifier><identifier>ISBN: 1424466741</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781424466764</identifier><identifier>EISBN: 1424466768</identifier><identifier>EISBN: 142446675X</identifier><identifier>EISBN: 9781424466757</identifier><identifier>DOI: 10.1109/IROS.2010.5650636</identifier><language>eng</language><publisher>IEEE</publisher><subject>Collision avoidance ; Computer crashes ; Humans ; Injuries ; Robot sensing systems ; Trajectory</subject><ispartof>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, p.4735-4742</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5650636$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5650636$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haddadin, S</creatorcontrib><creatorcontrib>Parusel, S</creatorcontrib><creatorcontrib>Belder, R</creatorcontrib><creatorcontrib>Vogel, J</creatorcontrib><creatorcontrib>Rokahr, T</creatorcontrib><creatorcontrib>Albu-Schäffer, A</creatorcontrib><creatorcontrib>Hirzinger, G</creatorcontrib><title>Holistic design and analysis for the human-friendly robotic co-worker</title><title>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>In this overview paper we present current work on safety analysis for physical Human-Robot Interaction (pHRI) and motion control methods for robotic co-workers. In particular, we introduce the analysis tools for investigating the potential injury a human would suffer during robot-human impacts. Furthermore, we outline our concept for establishing a procedure towards standardized crash testing in robotics with automobile crash-test dummies. Since it is only possible to investigate blunt impacts with these devices, we developed a drop testing setup for analyzing soft-tissue injury in robotics from a biomechanics perspective. In the second part of the paper, some of our methods for task preserving and task relaxing motion schemes are described, which enable collision avoidance in real-time. The algorithms are well suited to work in an integrated fashion with the soft robotics control developed for the DLR Lightweight Robot III (LWR-III). In addition, it is shown how the torque sensing capabilities of the robot can be used to support reactive motion schemes. Finally, an overview of our human-friendly control architecture for the LWR-III is given, which unifies the rich bundle of developed methods for this manipulator.</description><subject>Collision avoidance</subject><subject>Computer crashes</subject><subject>Humans</subject><subject>Injuries</subject><subject>Robot sensing systems</subject><subject>Trajectory</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>9781424466740</isbn><isbn>1424466741</isbn><isbn>9781424466764</isbn><isbn>1424466768</isbn><isbn>142446675X</isbn><isbn>9781424466757</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUNtKw0AUXG9gqfkA8WV_IHXv2fMopdpCoeDluWw2Z-1qmshuRPr3RiyCD8MwDDMMQ8g1ZzPOGdyuHjdPM8FGqY1mRpoTUkBluRJKGVMZdUomgmtZMmvM2T9PsfM_T9tLUuT8xthYVYEFMyGLZd_GPERPG8zxtaOua0a49pBjpqFPdNgh3X3uXVeGFLFr2gNNfd3_RHxffvXpHdMVuQiuzVgceUpe7hfP82W53jys5nfrMvJKD6VEK5gEW_sgDANg3nGoAAOvOCC4gE4Gw-txtm6MVKLR4Lz1EGSorUA5JTe_vRERtx8p7l06bI-nyG-5SlDx</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Haddadin, S</creator><creator>Parusel, S</creator><creator>Belder, R</creator><creator>Vogel, J</creator><creator>Rokahr, T</creator><creator>Albu-Schäffer, A</creator><creator>Hirzinger, G</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201010</creationdate><title>Holistic design and analysis for the human-friendly robotic co-worker</title><author>Haddadin, S ; Parusel, S ; Belder, R ; Vogel, J ; Rokahr, T ; Albu-Schäffer, A ; Hirzinger, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3e820398bcf260990ca1979ef1719e9afea3f61b6745d6342d59ac8c9f3fb82e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Collision avoidance</topic><topic>Computer crashes</topic><topic>Humans</topic><topic>Injuries</topic><topic>Robot sensing systems</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Haddadin, S</creatorcontrib><creatorcontrib>Parusel, S</creatorcontrib><creatorcontrib>Belder, R</creatorcontrib><creatorcontrib>Vogel, J</creatorcontrib><creatorcontrib>Rokahr, T</creatorcontrib><creatorcontrib>Albu-Schäffer, A</creatorcontrib><creatorcontrib>Hirzinger, G</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haddadin, S</au><au>Parusel, S</au><au>Belder, R</au><au>Vogel, J</au><au>Rokahr, T</au><au>Albu-Schäffer, A</au><au>Hirzinger, G</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Holistic design and analysis for the human-friendly robotic co-worker</atitle><btitle>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2010-10</date><risdate>2010</risdate><spage>4735</spage><epage>4742</epage><pages>4735-4742</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>9781424466740</isbn><isbn>1424466741</isbn><eisbn>9781424466764</eisbn><eisbn>1424466768</eisbn><eisbn>142446675X</eisbn><eisbn>9781424466757</eisbn><abstract>In this overview paper we present current work on safety analysis for physical Human-Robot Interaction (pHRI) and motion control methods for robotic co-workers. In particular, we introduce the analysis tools for investigating the potential injury a human would suffer during robot-human impacts. Furthermore, we outline our concept for establishing a procedure towards standardized crash testing in robotics with automobile crash-test dummies. Since it is only possible to investigate blunt impacts with these devices, we developed a drop testing setup for analyzing soft-tissue injury in robotics from a biomechanics perspective. In the second part of the paper, some of our methods for task preserving and task relaxing motion schemes are described, which enable collision avoidance in real-time. The algorithms are well suited to work in an integrated fashion with the soft robotics control developed for the DLR Lightweight Robot III (LWR-III). In addition, it is shown how the torque sensing capabilities of the robot can be used to support reactive motion schemes. Finally, an overview of our human-friendly control architecture for the LWR-III is given, which unifies the rich bundle of developed methods for this manipulator.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2010.5650636</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, p.4735-4742
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_5650636
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Collision avoidance
Computer crashes
Humans
Injuries
Robot sensing systems
Trajectory
title Holistic design and analysis for the human-friendly robotic co-worker
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A12%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Holistic%20design%20and%20analysis%20for%20the%20human-friendly%20robotic%20co-worker&rft.btitle=2010%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Haddadin,%20S&rft.date=2010-10&rft.spage=4735&rft.epage=4742&rft.pages=4735-4742&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=9781424466740&rft.isbn_list=1424466741&rft_id=info:doi/10.1109/IROS.2010.5650636&rft_dat=%3Cieee_6IE%3E5650636%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424466764&rft.eisbn_list=1424466768&rft.eisbn_list=142446675X&rft.eisbn_list=9781424466757&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5650636&rfr_iscdi=true