Trajectory planning with task constraints in densely filled environments

In this paper the problem of computing a rigid object trajectory in an environment populated with deformable objects is addressed. The problem arises in Minimally Invasive Robotic Surgery (MIRS) from the needs of reaching a point of interest inside the anatomy with rigid laparoscopic instruments. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Maris, B, Botturi, D, Fiorini, P
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2338
container_issue
container_start_page 2333
container_title
container_volume
creator Maris, B
Botturi, D
Fiorini, P
description In this paper the problem of computing a rigid object trajectory in an environment populated with deformable objects is addressed. The problem arises in Minimally Invasive Robotic Surgery (MIRS) from the needs of reaching a point of interest inside the anatomy with rigid laparoscopic instruments. We address the case of abdominal surgery. The abdomen is a densely populated soft environment and it is not possible to apply classical techniques for obstacle avoidance because a collision free solution is, most of the time, not feasible. In order to have a convergent algorithm with, at least, one possible solution we have to relax the constraints and allow collision under a specific contact threshold to avoid tissue damaging. In this work a new approach for trajectory planning under these peculiar conditions is implemented. The method computes offline the path which is then tested in a surgical simulator as part of a pre-operative surgical plan.
doi_str_mv 10.1109/IROS.2010.5650483
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5650483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5650483</ieee_id><sourcerecordid>5650483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-15d72519f30fd75167b661d2d89b8d2c9354a7148913f620f41e50ca4b9884a53</originalsourceid><addsrcrecordid>eNpVkMtKAzEYRuMNLHUeQNzkBabmzz1LKWoLhYLWdclMMpo6zZQkKH17ByyCq4_DgbP4ELoFMgMg5n75sn6dUTKikIJwzc5QZZQGTjmXUkl-jiYUBKuJlvLin-Pk8s8JfY2qnHeEjClltJETtNgku_NtGdIRH3obY4jv-DuUD1xs_sTtEHNJNsSScYjY-Zh9f8Rd6HvvsI9fIQ1x70d9g64622dfnXaK3p4eN_NFvVo_L-cPq7qllJUahFNUgOkY6ZwSIFUjJTjqtGm0o61hglsFXBtgnaSk4-AFaS1vjNbcCjZFd7_d4L3fHlLY23Tcnn5hPyrcUbc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Trajectory planning with task constraints in densely filled environments</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Maris, B ; Botturi, D ; Fiorini, P</creator><creatorcontrib>Maris, B ; Botturi, D ; Fiorini, P</creatorcontrib><description>In this paper the problem of computing a rigid object trajectory in an environment populated with deformable objects is addressed. The problem arises in Minimally Invasive Robotic Surgery (MIRS) from the needs of reaching a point of interest inside the anatomy with rigid laparoscopic instruments. We address the case of abdominal surgery. The abdomen is a densely populated soft environment and it is not possible to apply classical techniques for obstacle avoidance because a collision free solution is, most of the time, not feasible. In order to have a convergent algorithm with, at least, one possible solution we have to relax the constraints and allow collision under a specific contact threshold to avoid tissue damaging. In this work a new approach for trajectory planning under these peculiar conditions is implemented. The method computes offline the path which is then tested in a surgical simulator as part of a pre-operative surgical plan.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 9781424466740</identifier><identifier>ISBN: 1424466741</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781424466764</identifier><identifier>EISBN: 1424466768</identifier><identifier>EISBN: 142446675X</identifier><identifier>EISBN: 9781424466757</identifier><identifier>DOI: 10.1109/IROS.2010.5650483</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Deformable models ; Planning ; Polynomials ; Probes ; Surgery ; Trajectory</subject><ispartof>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, p.2333-2338</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-15d72519f30fd75167b661d2d89b8d2c9354a7148913f620f41e50ca4b9884a53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5650483$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5650483$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Maris, B</creatorcontrib><creatorcontrib>Botturi, D</creatorcontrib><creatorcontrib>Fiorini, P</creatorcontrib><title>Trajectory planning with task constraints in densely filled environments</title><title>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>In this paper the problem of computing a rigid object trajectory in an environment populated with deformable objects is addressed. The problem arises in Minimally Invasive Robotic Surgery (MIRS) from the needs of reaching a point of interest inside the anatomy with rigid laparoscopic instruments. We address the case of abdominal surgery. The abdomen is a densely populated soft environment and it is not possible to apply classical techniques for obstacle avoidance because a collision free solution is, most of the time, not feasible. In order to have a convergent algorithm with, at least, one possible solution we have to relax the constraints and allow collision under a specific contact threshold to avoid tissue damaging. In this work a new approach for trajectory planning under these peculiar conditions is implemented. The method computes offline the path which is then tested in a surgical simulator as part of a pre-operative surgical plan.</description><subject>Computational modeling</subject><subject>Deformable models</subject><subject>Planning</subject><subject>Polynomials</subject><subject>Probes</subject><subject>Surgery</subject><subject>Trajectory</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>9781424466740</isbn><isbn>1424466741</isbn><isbn>9781424466764</isbn><isbn>1424466768</isbn><isbn>142446675X</isbn><isbn>9781424466757</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtKAzEYRuMNLHUeQNzkBabmzz1LKWoLhYLWdclMMpo6zZQkKH17ByyCq4_DgbP4ELoFMgMg5n75sn6dUTKikIJwzc5QZZQGTjmXUkl-jiYUBKuJlvLin-Pk8s8JfY2qnHeEjClltJETtNgku_NtGdIRH3obY4jv-DuUD1xs_sTtEHNJNsSScYjY-Zh9f8Rd6HvvsI9fIQ1x70d9g64622dfnXaK3p4eN_NFvVo_L-cPq7qllJUahFNUgOkY6ZwSIFUjJTjqtGm0o61hglsFXBtgnaSk4-AFaS1vjNbcCjZFd7_d4L3fHlLY23Tcnn5hPyrcUbc</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Maris, B</creator><creator>Botturi, D</creator><creator>Fiorini, P</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201010</creationdate><title>Trajectory planning with task constraints in densely filled environments</title><author>Maris, B ; Botturi, D ; Fiorini, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-15d72519f30fd75167b661d2d89b8d2c9354a7148913f620f41e50ca4b9884a53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computational modeling</topic><topic>Deformable models</topic><topic>Planning</topic><topic>Polynomials</topic><topic>Probes</topic><topic>Surgery</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Maris, B</creatorcontrib><creatorcontrib>Botturi, D</creatorcontrib><creatorcontrib>Fiorini, P</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maris, B</au><au>Botturi, D</au><au>Fiorini, P</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Trajectory planning with task constraints in densely filled environments</atitle><btitle>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2010-10</date><risdate>2010</risdate><spage>2333</spage><epage>2338</epage><pages>2333-2338</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>9781424466740</isbn><isbn>1424466741</isbn><eisbn>9781424466764</eisbn><eisbn>1424466768</eisbn><eisbn>142446675X</eisbn><eisbn>9781424466757</eisbn><abstract>In this paper the problem of computing a rigid object trajectory in an environment populated with deformable objects is addressed. The problem arises in Minimally Invasive Robotic Surgery (MIRS) from the needs of reaching a point of interest inside the anatomy with rigid laparoscopic instruments. We address the case of abdominal surgery. The abdomen is a densely populated soft environment and it is not possible to apply classical techniques for obstacle avoidance because a collision free solution is, most of the time, not feasible. In order to have a convergent algorithm with, at least, one possible solution we have to relax the constraints and allow collision under a specific contact threshold to avoid tissue damaging. In this work a new approach for trajectory planning under these peculiar conditions is implemented. The method computes offline the path which is then tested in a surgical simulator as part of a pre-operative surgical plan.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2010.5650483</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, p.2333-2338
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_5650483
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational modeling
Deformable models
Planning
Polynomials
Probes
Surgery
Trajectory
title Trajectory planning with task constraints in densely filled environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A44%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Trajectory%20planning%20with%20task%20constraints%20in%20densely%20filled%20environments&rft.btitle=2010%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Maris,%20B&rft.date=2010-10&rft.spage=2333&rft.epage=2338&rft.pages=2333-2338&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=9781424466740&rft.isbn_list=1424466741&rft_id=info:doi/10.1109/IROS.2010.5650483&rft_dat=%3Cieee_6IE%3E5650483%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424466764&rft.eisbn_list=1424466768&rft.eisbn_list=142446675X&rft.eisbn_list=9781424466757&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5650483&rfr_iscdi=true