A visual exploration algorithm using semantic cues that constructs image based hybrid maps
A vision based exploration algorithm that invokes semantic cues for constructing a hybrid map of images - a combination of semantic and topological maps is presented in this paper. At the top level the map is a graph of semantic constructs. Each node in the graph is a semantic construct or label suc...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1321 |
---|---|
container_issue | |
container_start_page | 1316 |
container_title | |
container_volume | |
creator | Krishnan, Aravindhan K Krishna, K Madhava |
description | A vision based exploration algorithm that invokes semantic cues for constructing a hybrid map of images - a combination of semantic and topological maps is presented in this paper. At the top level the map is a graph of semantic constructs. Each node in the graph is a semantic construct or label such as a room or a corridor, the edge represented by a transition region such as a doorway that links the two semantic constructs. Each semantic node embeds within it a topological graph that constitutes the map at the middle level. The topological graph is a set of nodes, each node representing an image of the higher semantic construct. At the low level the topological graph embeds metric values and relations, where each node embeds the pose of the robot from which the image was taken and any two nodes in the graph are related by a transformation consisting of a rotation and translation. The exploration algorithm explores a semantic construct completely before moving or branching onto a new construct. Within each semantic construct it uses a local feature based exploration algorithm that uses a combination of local and global decisions to decide the next best place to move. During the process of exploring a semantic construct it identifies transition regions that serve as gateways to move from that construct to another. The exploration is deemed complete when all transition regions are marked visited. Loop detection happens at transition regions and graph relaxation techniques are used to close loops when detected to obtain a consistent metric embedding of the robot poses. Semantic constructs are labeled using a visual bag of words (VBOW) representation with a probabilistic SVM classifier. |
doi_str_mv | 10.1109/IROS.2010.5649870 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5649870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5649870</ieee_id><sourcerecordid>5649870</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-82eb18804abb5b25b4c706b036a07fc69a8ab1865c5f510b773e4bb225caa57f3</originalsourceid><addsrcrecordid>eNpVkMlqwzAYhNUNGlI_QOlFL-D0l6zNxxC6BAKBLpdewi9FTlS8BEsuzdvX0FDoaRhm-BiGkFsGM8agvF--rF9nHEYrlSiNhjOSldowwYVQSitxTiacySIHo9TFv0zA5V8mzTXJYvwEGFG6NKWakI85_QpxwJr670Pd9ZhC11Ksd10f0r6hQwztjkbfYJuCo27wkaY9Juq6NqZ-cCnS0ODOU4vRb-n-aPuwpQ0e4g25qrCOPjvplLw_PrwtnvPV-mm5mK_ywLRMueHeMmNAoLXScmmF06AsFApBV06VaHAsKOlkJRlYrQsvrOVcOkSpq2JK7n65wXu_OfTjnP64OT1V_AA5ollB</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A visual exploration algorithm using semantic cues that constructs image based hybrid maps</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Krishnan, Aravindhan K ; Krishna, K Madhava</creator><creatorcontrib>Krishnan, Aravindhan K ; Krishna, K Madhava</creatorcontrib><description>A vision based exploration algorithm that invokes semantic cues for constructing a hybrid map of images - a combination of semantic and topological maps is presented in this paper. At the top level the map is a graph of semantic constructs. Each node in the graph is a semantic construct or label such as a room or a corridor, the edge represented by a transition region such as a doorway that links the two semantic constructs. Each semantic node embeds within it a topological graph that constitutes the map at the middle level. The topological graph is a set of nodes, each node representing an image of the higher semantic construct. At the low level the topological graph embeds metric values and relations, where each node embeds the pose of the robot from which the image was taken and any two nodes in the graph are related by a transformation consisting of a rotation and translation. The exploration algorithm explores a semantic construct completely before moving or branching onto a new construct. Within each semantic construct it uses a local feature based exploration algorithm that uses a combination of local and global decisions to decide the next best place to move. During the process of exploring a semantic construct it identifies transition regions that serve as gateways to move from that construct to another. The exploration is deemed complete when all transition regions are marked visited. Loop detection happens at transition regions and graph relaxation techniques are used to close loops when detected to obtain a consistent metric embedding of the robot poses. Semantic constructs are labeled using a visual bag of words (VBOW) representation with a probabilistic SVM classifier.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 9781424466740</identifier><identifier>ISBN: 1424466741</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781424466764</identifier><identifier>EISBN: 1424466768</identifier><identifier>EISBN: 142446675X</identifier><identifier>EISBN: 9781424466757</identifier><identifier>DOI: 10.1109/IROS.2010.5649870</identifier><language>eng</language><publisher>IEEE</publisher><subject>Logic gates ; Measurement ; Probabilistic logic ; Robot sensing systems ; Semantics ; Support vector machines</subject><ispartof>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, p.1316-1321</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5649870$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5649870$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Krishnan, Aravindhan K</creatorcontrib><creatorcontrib>Krishna, K Madhava</creatorcontrib><title>A visual exploration algorithm using semantic cues that constructs image based hybrid maps</title><title>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>A vision based exploration algorithm that invokes semantic cues for constructing a hybrid map of images - a combination of semantic and topological maps is presented in this paper. At the top level the map is a graph of semantic constructs. Each node in the graph is a semantic construct or label such as a room or a corridor, the edge represented by a transition region such as a doorway that links the two semantic constructs. Each semantic node embeds within it a topological graph that constitutes the map at the middle level. The topological graph is a set of nodes, each node representing an image of the higher semantic construct. At the low level the topological graph embeds metric values and relations, where each node embeds the pose of the robot from which the image was taken and any two nodes in the graph are related by a transformation consisting of a rotation and translation. The exploration algorithm explores a semantic construct completely before moving or branching onto a new construct. Within each semantic construct it uses a local feature based exploration algorithm that uses a combination of local and global decisions to decide the next best place to move. During the process of exploring a semantic construct it identifies transition regions that serve as gateways to move from that construct to another. The exploration is deemed complete when all transition regions are marked visited. Loop detection happens at transition regions and graph relaxation techniques are used to close loops when detected to obtain a consistent metric embedding of the robot poses. Semantic constructs are labeled using a visual bag of words (VBOW) representation with a probabilistic SVM classifier.</description><subject>Logic gates</subject><subject>Measurement</subject><subject>Probabilistic logic</subject><subject>Robot sensing systems</subject><subject>Semantics</subject><subject>Support vector machines</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>9781424466740</isbn><isbn>1424466741</isbn><isbn>9781424466764</isbn><isbn>1424466768</isbn><isbn>142446675X</isbn><isbn>9781424466757</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMlqwzAYhNUNGlI_QOlFL-D0l6zNxxC6BAKBLpdewi9FTlS8BEsuzdvX0FDoaRhm-BiGkFsGM8agvF--rF9nHEYrlSiNhjOSldowwYVQSitxTiacySIHo9TFv0zA5V8mzTXJYvwEGFG6NKWakI85_QpxwJr670Pd9ZhC11Ksd10f0r6hQwztjkbfYJuCo27wkaY9Juq6NqZ-cCnS0ODOU4vRb-n-aPuwpQ0e4g25qrCOPjvplLw_PrwtnvPV-mm5mK_ywLRMueHeMmNAoLXScmmF06AsFApBV06VaHAsKOlkJRlYrQsvrOVcOkSpq2JK7n65wXu_OfTjnP64OT1V_AA5ollB</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Krishnan, Aravindhan K</creator><creator>Krishna, K Madhava</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201010</creationdate><title>A visual exploration algorithm using semantic cues that constructs image based hybrid maps</title><author>Krishnan, Aravindhan K ; Krishna, K Madhava</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-82eb18804abb5b25b4c706b036a07fc69a8ab1865c5f510b773e4bb225caa57f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Logic gates</topic><topic>Measurement</topic><topic>Probabilistic logic</topic><topic>Robot sensing systems</topic><topic>Semantics</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Krishnan, Aravindhan K</creatorcontrib><creatorcontrib>Krishna, K Madhava</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krishnan, Aravindhan K</au><au>Krishna, K Madhava</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A visual exploration algorithm using semantic cues that constructs image based hybrid maps</atitle><btitle>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2010-10</date><risdate>2010</risdate><spage>1316</spage><epage>1321</epage><pages>1316-1321</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>9781424466740</isbn><isbn>1424466741</isbn><eisbn>9781424466764</eisbn><eisbn>1424466768</eisbn><eisbn>142446675X</eisbn><eisbn>9781424466757</eisbn><abstract>A vision based exploration algorithm that invokes semantic cues for constructing a hybrid map of images - a combination of semantic and topological maps is presented in this paper. At the top level the map is a graph of semantic constructs. Each node in the graph is a semantic construct or label such as a room or a corridor, the edge represented by a transition region such as a doorway that links the two semantic constructs. Each semantic node embeds within it a topological graph that constitutes the map at the middle level. The topological graph is a set of nodes, each node representing an image of the higher semantic construct. At the low level the topological graph embeds metric values and relations, where each node embeds the pose of the robot from which the image was taken and any two nodes in the graph are related by a transformation consisting of a rotation and translation. The exploration algorithm explores a semantic construct completely before moving or branching onto a new construct. Within each semantic construct it uses a local feature based exploration algorithm that uses a combination of local and global decisions to decide the next best place to move. During the process of exploring a semantic construct it identifies transition regions that serve as gateways to move from that construct to another. The exploration is deemed complete when all transition regions are marked visited. Loop detection happens at transition regions and graph relaxation techniques are used to close loops when detected to obtain a consistent metric embedding of the robot poses. Semantic constructs are labeled using a visual bag of words (VBOW) representation with a probabilistic SVM classifier.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2010.5649870</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0858 |
ispartof | 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, p.1316-1321 |
issn | 2153-0858 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_5649870 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Logic gates Measurement Probabilistic logic Robot sensing systems Semantics Support vector machines |
title | A visual exploration algorithm using semantic cues that constructs image based hybrid maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A31%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20visual%20exploration%20algorithm%20using%20semantic%20cues%20that%20constructs%20image%20based%20hybrid%20maps&rft.btitle=2010%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Krishnan,%20Aravindhan%20K&rft.date=2010-10&rft.spage=1316&rft.epage=1321&rft.pages=1316-1321&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=9781424466740&rft.isbn_list=1424466741&rft_id=info:doi/10.1109/IROS.2010.5649870&rft_dat=%3Cieee_6IE%3E5649870%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424466764&rft.eisbn_list=1424466768&rft.eisbn_list=142446675X&rft.eisbn_list=9781424466757&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5649870&rfr_iscdi=true |