Unsupervised learning of compact 3D models based on the detection of recurrent structures

In this paper we describe a novel algorithm for constructing a compact representation of 3D laser range data. Our approach extracts an alphabet of local scans from the scene. The words of this alphabet are used to replace recurrent local 3D structures, which leads to a substantial compression of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ruhnke, M, Steder, B, Grisetti, G, Burgard, W
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2142
container_issue
container_start_page 2137
container_title
container_volume
creator Ruhnke, M
Steder, B
Grisetti, G
Burgard, W
description In this paper we describe a novel algorithm for constructing a compact representation of 3D laser range data. Our approach extracts an alphabet of local scans from the scene. The words of this alphabet are used to replace recurrent local 3D structures, which leads to a substantial compression of the entire point cloud. We optimize our model in terms of complexity and accuracy by minimizing the Bayesian information criterion (BIC). Experimental evaluations on large real-world data show that our method allows robots to accurately reconstruct environments with as few as 70 words.
doi_str_mv 10.1109/IROS.2010.5649730
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5649730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5649730</ieee_id><sourcerecordid>5649730</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-7c00d378545a3d05c1142e6f76e21591c23fcd18021b8306b039943d2be1b053</originalsourceid><addsrcrecordid>eNpVkNtKAzEYhOMJLLUPIN7kBbb-OSeXUk-FQkHrhVdlN_lXV9rdJckKvr0rFsGrYZiPYRhCLhnMGQN3vXxaP885jFZp6YyAIzJzxjLJpdTaaHlMJpwpUYDV-uRfJuH0L1P2nMxS-gAYq4yzTk_I60ubhh7jZ5Mw0B2WsW3aN9rV1Hf7vvSZilu67wLuEq3KH6ZraX5HGjCjz83oRjaiH2LENtOU4-DzEDFdkLO63CWcHXRKNvd3m8VjsVo_LBc3q6LhzObCeIAgjFVSlSKA8mycjro2GsfZjnkuah-YBc4qK0BXIJyTIvAKWQVKTMnVb22DiNs-Nvsyfm0PP4lv2DpW8Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Unsupervised learning of compact 3D models based on the detection of recurrent structures</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ruhnke, M ; Steder, B ; Grisetti, G ; Burgard, W</creator><creatorcontrib>Ruhnke, M ; Steder, B ; Grisetti, G ; Burgard, W</creatorcontrib><description>In this paper we describe a novel algorithm for constructing a compact representation of 3D laser range data. Our approach extracts an alphabet of local scans from the scene. The words of this alphabet are used to replace recurrent local 3D structures, which leads to a substantial compression of the entire point cloud. We optimize our model in terms of complexity and accuracy by minimizing the Bayesian information criterion (BIC). Experimental evaluations on large real-world data show that our method allows robots to accurately reconstruct environments with as few as 70 words.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 9781424466740</identifier><identifier>ISBN: 1424466741</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781424466764</identifier><identifier>EISBN: 1424466768</identifier><identifier>EISBN: 142446675X</identifier><identifier>EISBN: 9781424466757</identifier><identifier>DOI: 10.1109/IROS.2010.5649730</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Clouds ; Complexity theory ; Data models ; Feature extraction ; Solid modeling ; Three dimensional displays</subject><ispartof>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, p.2137-2142</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5649730$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5649730$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ruhnke, M</creatorcontrib><creatorcontrib>Steder, B</creatorcontrib><creatorcontrib>Grisetti, G</creatorcontrib><creatorcontrib>Burgard, W</creatorcontrib><title>Unsupervised learning of compact 3D models based on the detection of recurrent structures</title><title>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>In this paper we describe a novel algorithm for constructing a compact representation of 3D laser range data. Our approach extracts an alphabet of local scans from the scene. The words of this alphabet are used to replace recurrent local 3D structures, which leads to a substantial compression of the entire point cloud. We optimize our model in terms of complexity and accuracy by minimizing the Bayesian information criterion (BIC). Experimental evaluations on large real-world data show that our method allows robots to accurately reconstruct environments with as few as 70 words.</description><subject>Accuracy</subject><subject>Clouds</subject><subject>Complexity theory</subject><subject>Data models</subject><subject>Feature extraction</subject><subject>Solid modeling</subject><subject>Three dimensional displays</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>9781424466740</isbn><isbn>1424466741</isbn><isbn>9781424466764</isbn><isbn>1424466768</isbn><isbn>142446675X</isbn><isbn>9781424466757</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkNtKAzEYhOMJLLUPIN7kBbb-OSeXUk-FQkHrhVdlN_lXV9rdJckKvr0rFsGrYZiPYRhCLhnMGQN3vXxaP885jFZp6YyAIzJzxjLJpdTaaHlMJpwpUYDV-uRfJuH0L1P2nMxS-gAYq4yzTk_I60ubhh7jZ5Mw0B2WsW3aN9rV1Hf7vvSZilu67wLuEq3KH6ZraX5HGjCjz83oRjaiH2LENtOU4-DzEDFdkLO63CWcHXRKNvd3m8VjsVo_LBc3q6LhzObCeIAgjFVSlSKA8mycjro2GsfZjnkuah-YBc4qK0BXIJyTIvAKWQVKTMnVb22DiNs-Nvsyfm0PP4lv2DpW8Q</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Ruhnke, M</creator><creator>Steder, B</creator><creator>Grisetti, G</creator><creator>Burgard, W</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20100101</creationdate><title>Unsupervised learning of compact 3D models based on the detection of recurrent structures</title><author>Ruhnke, M ; Steder, B ; Grisetti, G ; Burgard, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-7c00d378545a3d05c1142e6f76e21591c23fcd18021b8306b039943d2be1b053</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Clouds</topic><topic>Complexity theory</topic><topic>Data models</topic><topic>Feature extraction</topic><topic>Solid modeling</topic><topic>Three dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Ruhnke, M</creatorcontrib><creatorcontrib>Steder, B</creatorcontrib><creatorcontrib>Grisetti, G</creatorcontrib><creatorcontrib>Burgard, W</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ruhnke, M</au><au>Steder, B</au><au>Grisetti, G</au><au>Burgard, W</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Unsupervised learning of compact 3D models based on the detection of recurrent structures</atitle><btitle>2010 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2010-01-01</date><risdate>2010</risdate><spage>2137</spage><epage>2142</epage><pages>2137-2142</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>9781424466740</isbn><isbn>1424466741</isbn><eisbn>9781424466764</eisbn><eisbn>1424466768</eisbn><eisbn>142446675X</eisbn><eisbn>9781424466757</eisbn><abstract>In this paper we describe a novel algorithm for constructing a compact representation of 3D laser range data. Our approach extracts an alphabet of local scans from the scene. The words of this alphabet are used to replace recurrent local 3D structures, which leads to a substantial compression of the entire point cloud. We optimize our model in terms of complexity and accuracy by minimizing the Bayesian information criterion (BIC). Experimental evaluations on large real-world data show that our method allows robots to accurately reconstruct environments with as few as 70 words.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2010.5649730</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, p.2137-2142
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_5649730
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Clouds
Complexity theory
Data models
Feature extraction
Solid modeling
Three dimensional displays
title Unsupervised learning of compact 3D models based on the detection of recurrent structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Unsupervised%20learning%20of%20compact%203D%20models%20based%20on%20the%20detection%20of%20recurrent%20structures&rft.btitle=2010%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Ruhnke,%20M&rft.date=2010-01-01&rft.spage=2137&rft.epage=2142&rft.pages=2137-2142&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=9781424466740&rft.isbn_list=1424466741&rft_id=info:doi/10.1109/IROS.2010.5649730&rft_dat=%3Cieee_6IE%3E5649730%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424466764&rft.eisbn_list=1424466768&rft.eisbn_list=142446675X&rft.eisbn_list=9781424466757&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5649730&rfr_iscdi=true