Training neural networks by electromagnetism-like mechanism algorithm for tourism arrivals forecasting
Because of accurate forecasting of tourist arrivals is very important for tourism industry, various tourist arrivals forecasting models have been developed. The aim of this paper is to introduce the basic theoretical principles of electromagnetism-like mechanism (EM) algorithm and design a new neura...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 688 |
---|---|
container_issue | |
container_start_page | 679 |
container_title | |
container_volume | |
creator | Qing Wu Chun-Jiang Zhang Liang Gao Xinyu Li |
description | Because of accurate forecasting of tourist arrivals is very important for tourism industry, various tourist arrivals forecasting models have been developed. The aim of this paper is to introduce the basic theoretical principles of electromagnetism-like mechanism (EM) algorithm and design a new neural network model for tourism forecasting which uses the EM algorithm as the learning rule (EMNN). The EMNN is applied to two major tourism demand forecasting methods-econometrical model and time series analysis. In numerical experiment, this study tests the accuracy of EMNN model and compares the EMNN model with other traditional forecasting models, such as moving average (MV) and multiple regressions (MR). We also compares EMNN model with artificial intelligence approaches, for instance, the adaptive network-based fuzzy inference system (ANFIS) model and basic feed-forward neural networks model. Based on the experimental results, we can see that the EMNN model owns excellent performance in forecasting tourist arrivals. |
doi_str_mv | 10.1109/BICTA.2010.5645207 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5645207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5645207</ieee_id><sourcerecordid>5645207</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-3fb7d89b08538a524aa0c50d54156fd87b51af8e683631ad459fbd24202060493</originalsourceid><addsrcrecordid>eNotkMtOwzAURI0QElDyA7DxD6RcP-MsS8SjUiU22Vc3iZ2a5oGcFNS_x0BmMzpnMYsh5J7BmjHIH5-2RblZc4istFQcsgtyyySXUksJ8pIkeWYWFhm7Jsk0fUCM4plg4oa4MqAf_NDSwZ4CdrHm7zEcJ1qdqe1sPYexxzZaP_Vp54-W9rY-4BCRYteOwc-Hnrox0Hk8hT8bgv_CbvqVtsZpjut35MpFZZOlV6R8eS6Lt3T3_rotNrvU5zCnwlVZY_IKjBIGFZeIUCtolGRKu8ZklWLojNVGaMGwkSp3VcMlBw4aZC5W5OF_1ltr95_B9xjO--UZ8QO-HVlH</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Training neural networks by electromagnetism-like mechanism algorithm for tourism arrivals forecasting</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Qing Wu ; Chun-Jiang Zhang ; Liang Gao ; Xinyu Li</creator><creatorcontrib>Qing Wu ; Chun-Jiang Zhang ; Liang Gao ; Xinyu Li</creatorcontrib><description>Because of accurate forecasting of tourist arrivals is very important for tourism industry, various tourist arrivals forecasting models have been developed. The aim of this paper is to introduce the basic theoretical principles of electromagnetism-like mechanism (EM) algorithm and design a new neural network model for tourism forecasting which uses the EM algorithm as the learning rule (EMNN). The EMNN is applied to two major tourism demand forecasting methods-econometrical model and time series analysis. In numerical experiment, this study tests the accuracy of EMNN model and compares the EMNN model with other traditional forecasting models, such as moving average (MV) and multiple regressions (MR). We also compares EMNN model with artificial intelligence approaches, for instance, the adaptive network-based fuzzy inference system (ANFIS) model and basic feed-forward neural networks model. Based on the experimental results, we can see that the EMNN model owns excellent performance in forecasting tourist arrivals.</description><identifier>ISBN: 9781424464371</identifier><identifier>ISBN: 1424464374</identifier><identifier>EISBN: 1424464404</identifier><identifier>EISBN: 9781424464395</identifier><identifier>EISBN: 1424464390</identifier><identifier>EISBN: 9781424464401</identifier><identifier>DOI: 10.1109/BICTA.2010.5645207</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; Econometrical model ; Electromagnetism-Like Mechanism ; Forecasting ; Industries ; Neural network ; Numerical models ; Predictive models ; Time series analysis ; Tourism demand forecasting</subject><ispartof>2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), 2010, p.679-688</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5645207$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5645207$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qing Wu</creatorcontrib><creatorcontrib>Chun-Jiang Zhang</creatorcontrib><creatorcontrib>Liang Gao</creatorcontrib><creatorcontrib>Xinyu Li</creatorcontrib><title>Training neural networks by electromagnetism-like mechanism algorithm for tourism arrivals forecasting</title><title>2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)</title><addtitle>BICTA</addtitle><description>Because of accurate forecasting of tourist arrivals is very important for tourism industry, various tourist arrivals forecasting models have been developed. The aim of this paper is to introduce the basic theoretical principles of electromagnetism-like mechanism (EM) algorithm and design a new neural network model for tourism forecasting which uses the EM algorithm as the learning rule (EMNN). The EMNN is applied to two major tourism demand forecasting methods-econometrical model and time series analysis. In numerical experiment, this study tests the accuracy of EMNN model and compares the EMNN model with other traditional forecasting models, such as moving average (MV) and multiple regressions (MR). We also compares EMNN model with artificial intelligence approaches, for instance, the adaptive network-based fuzzy inference system (ANFIS) model and basic feed-forward neural networks model. Based on the experimental results, we can see that the EMNN model owns excellent performance in forecasting tourist arrivals.</description><subject>Biological system modeling</subject><subject>Econometrical model</subject><subject>Electromagnetism-Like Mechanism</subject><subject>Forecasting</subject><subject>Industries</subject><subject>Neural network</subject><subject>Numerical models</subject><subject>Predictive models</subject><subject>Time series analysis</subject><subject>Tourism demand forecasting</subject><isbn>9781424464371</isbn><isbn>1424464374</isbn><isbn>1424464404</isbn><isbn>9781424464395</isbn><isbn>1424464390</isbn><isbn>9781424464401</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkMtOwzAURI0QElDyA7DxD6RcP-MsS8SjUiU22Vc3iZ2a5oGcFNS_x0BmMzpnMYsh5J7BmjHIH5-2RblZc4istFQcsgtyyySXUksJ8pIkeWYWFhm7Jsk0fUCM4plg4oa4MqAf_NDSwZ4CdrHm7zEcJ1qdqe1sPYexxzZaP_Vp54-W9rY-4BCRYteOwc-Hnrox0Hk8hT8bgv_CbvqVtsZpjut35MpFZZOlV6R8eS6Lt3T3_rotNrvU5zCnwlVZY_IKjBIGFZeIUCtolGRKu8ZklWLojNVGaMGwkSp3VcMlBw4aZC5W5OF_1ltr95_B9xjO--UZ8QO-HVlH</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Qing Wu</creator><creator>Chun-Jiang Zhang</creator><creator>Liang Gao</creator><creator>Xinyu Li</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201009</creationdate><title>Training neural networks by electromagnetism-like mechanism algorithm for tourism arrivals forecasting</title><author>Qing Wu ; Chun-Jiang Zhang ; Liang Gao ; Xinyu Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-3fb7d89b08538a524aa0c50d54156fd87b51af8e683631ad459fbd24202060493</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological system modeling</topic><topic>Econometrical model</topic><topic>Electromagnetism-Like Mechanism</topic><topic>Forecasting</topic><topic>Industries</topic><topic>Neural network</topic><topic>Numerical models</topic><topic>Predictive models</topic><topic>Time series analysis</topic><topic>Tourism demand forecasting</topic><toplevel>online_resources</toplevel><creatorcontrib>Qing Wu</creatorcontrib><creatorcontrib>Chun-Jiang Zhang</creatorcontrib><creatorcontrib>Liang Gao</creatorcontrib><creatorcontrib>Xinyu Li</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qing Wu</au><au>Chun-Jiang Zhang</au><au>Liang Gao</au><au>Xinyu Li</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Training neural networks by electromagnetism-like mechanism algorithm for tourism arrivals forecasting</atitle><btitle>2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)</btitle><stitle>BICTA</stitle><date>2010-09</date><risdate>2010</risdate><spage>679</spage><epage>688</epage><pages>679-688</pages><isbn>9781424464371</isbn><isbn>1424464374</isbn><eisbn>1424464404</eisbn><eisbn>9781424464395</eisbn><eisbn>1424464390</eisbn><eisbn>9781424464401</eisbn><abstract>Because of accurate forecasting of tourist arrivals is very important for tourism industry, various tourist arrivals forecasting models have been developed. The aim of this paper is to introduce the basic theoretical principles of electromagnetism-like mechanism (EM) algorithm and design a new neural network model for tourism forecasting which uses the EM algorithm as the learning rule (EMNN). The EMNN is applied to two major tourism demand forecasting methods-econometrical model and time series analysis. In numerical experiment, this study tests the accuracy of EMNN model and compares the EMNN model with other traditional forecasting models, such as moving average (MV) and multiple regressions (MR). We also compares EMNN model with artificial intelligence approaches, for instance, the adaptive network-based fuzzy inference system (ANFIS) model and basic feed-forward neural networks model. Based on the experimental results, we can see that the EMNN model owns excellent performance in forecasting tourist arrivals.</abstract><pub>IEEE</pub><doi>10.1109/BICTA.2010.5645207</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424464371 |
ispartof | 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), 2010, p.679-688 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5645207 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biological system modeling Econometrical model Electromagnetism-Like Mechanism Forecasting Industries Neural network Numerical models Predictive models Time series analysis Tourism demand forecasting |
title | Training neural networks by electromagnetism-like mechanism algorithm for tourism arrivals forecasting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Training%20neural%20networks%20by%20electromagnetism-like%20mechanism%20algorithm%20for%20tourism%20arrivals%20forecasting&rft.btitle=2010%20IEEE%20Fifth%20International%20Conference%20on%20Bio-Inspired%20Computing:%20Theories%20and%20Applications%20(BIC-TA)&rft.au=Qing%20Wu&rft.date=2010-09&rft.spage=679&rft.epage=688&rft.pages=679-688&rft.isbn=9781424464371&rft.isbn_list=1424464374&rft_id=info:doi/10.1109/BICTA.2010.5645207&rft_dat=%3Cieee_6IE%3E5645207%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424464404&rft.eisbn_list=9781424464395&rft.eisbn_list=1424464390&rft.eisbn_list=9781424464401&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5645207&rfr_iscdi=true |