Training neural networks by electromagnetism-like mechanism algorithm for tourism arrivals forecasting

Because of accurate forecasting of tourist arrivals is very important for tourism industry, various tourist arrivals forecasting models have been developed. The aim of this paper is to introduce the basic theoretical principles of electromagnetism-like mechanism (EM) algorithm and design a new neura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Qing Wu, Chun-Jiang Zhang, Liang Gao, Xinyu Li
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 688
container_issue
container_start_page 679
container_title
container_volume
creator Qing Wu
Chun-Jiang Zhang
Liang Gao
Xinyu Li
description Because of accurate forecasting of tourist arrivals is very important for tourism industry, various tourist arrivals forecasting models have been developed. The aim of this paper is to introduce the basic theoretical principles of electromagnetism-like mechanism (EM) algorithm and design a new neural network model for tourism forecasting which uses the EM algorithm as the learning rule (EMNN). The EMNN is applied to two major tourism demand forecasting methods-econometrical model and time series analysis. In numerical experiment, this study tests the accuracy of EMNN model and compares the EMNN model with other traditional forecasting models, such as moving average (MV) and multiple regressions (MR). We also compares EMNN model with artificial intelligence approaches, for instance, the adaptive network-based fuzzy inference system (ANFIS) model and basic feed-forward neural networks model. Based on the experimental results, we can see that the EMNN model owns excellent performance in forecasting tourist arrivals.
doi_str_mv 10.1109/BICTA.2010.5645207
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5645207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5645207</ieee_id><sourcerecordid>5645207</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-3fb7d89b08538a524aa0c50d54156fd87b51af8e683631ad459fbd24202060493</originalsourceid><addsrcrecordid>eNotkMtOwzAURI0QElDyA7DxD6RcP-MsS8SjUiU22Vc3iZ2a5oGcFNS_x0BmMzpnMYsh5J7BmjHIH5-2RblZc4istFQcsgtyyySXUksJ8pIkeWYWFhm7Jsk0fUCM4plg4oa4MqAf_NDSwZ4CdrHm7zEcJ1qdqe1sPYexxzZaP_Vp54-W9rY-4BCRYteOwc-Hnrox0Hk8hT8bgv_CbvqVtsZpjut35MpFZZOlV6R8eS6Lt3T3_rotNrvU5zCnwlVZY_IKjBIGFZeIUCtolGRKu8ZklWLojNVGaMGwkSp3VcMlBw4aZC5W5OF_1ltr95_B9xjO--UZ8QO-HVlH</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Training neural networks by electromagnetism-like mechanism algorithm for tourism arrivals forecasting</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Qing Wu ; Chun-Jiang Zhang ; Liang Gao ; Xinyu Li</creator><creatorcontrib>Qing Wu ; Chun-Jiang Zhang ; Liang Gao ; Xinyu Li</creatorcontrib><description>Because of accurate forecasting of tourist arrivals is very important for tourism industry, various tourist arrivals forecasting models have been developed. The aim of this paper is to introduce the basic theoretical principles of electromagnetism-like mechanism (EM) algorithm and design a new neural network model for tourism forecasting which uses the EM algorithm as the learning rule (EMNN). The EMNN is applied to two major tourism demand forecasting methods-econometrical model and time series analysis. In numerical experiment, this study tests the accuracy of EMNN model and compares the EMNN model with other traditional forecasting models, such as moving average (MV) and multiple regressions (MR). We also compares EMNN model with artificial intelligence approaches, for instance, the adaptive network-based fuzzy inference system (ANFIS) model and basic feed-forward neural networks model. Based on the experimental results, we can see that the EMNN model owns excellent performance in forecasting tourist arrivals.</description><identifier>ISBN: 9781424464371</identifier><identifier>ISBN: 1424464374</identifier><identifier>EISBN: 1424464404</identifier><identifier>EISBN: 9781424464395</identifier><identifier>EISBN: 1424464390</identifier><identifier>EISBN: 9781424464401</identifier><identifier>DOI: 10.1109/BICTA.2010.5645207</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; Econometrical model ; Electromagnetism-Like Mechanism ; Forecasting ; Industries ; Neural network ; Numerical models ; Predictive models ; Time series analysis ; Tourism demand forecasting</subject><ispartof>2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), 2010, p.679-688</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5645207$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5645207$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qing Wu</creatorcontrib><creatorcontrib>Chun-Jiang Zhang</creatorcontrib><creatorcontrib>Liang Gao</creatorcontrib><creatorcontrib>Xinyu Li</creatorcontrib><title>Training neural networks by electromagnetism-like mechanism algorithm for tourism arrivals forecasting</title><title>2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)</title><addtitle>BICTA</addtitle><description>Because of accurate forecasting of tourist arrivals is very important for tourism industry, various tourist arrivals forecasting models have been developed. The aim of this paper is to introduce the basic theoretical principles of electromagnetism-like mechanism (EM) algorithm and design a new neural network model for tourism forecasting which uses the EM algorithm as the learning rule (EMNN). The EMNN is applied to two major tourism demand forecasting methods-econometrical model and time series analysis. In numerical experiment, this study tests the accuracy of EMNN model and compares the EMNN model with other traditional forecasting models, such as moving average (MV) and multiple regressions (MR). We also compares EMNN model with artificial intelligence approaches, for instance, the adaptive network-based fuzzy inference system (ANFIS) model and basic feed-forward neural networks model. Based on the experimental results, we can see that the EMNN model owns excellent performance in forecasting tourist arrivals.</description><subject>Biological system modeling</subject><subject>Econometrical model</subject><subject>Electromagnetism-Like Mechanism</subject><subject>Forecasting</subject><subject>Industries</subject><subject>Neural network</subject><subject>Numerical models</subject><subject>Predictive models</subject><subject>Time series analysis</subject><subject>Tourism demand forecasting</subject><isbn>9781424464371</isbn><isbn>1424464374</isbn><isbn>1424464404</isbn><isbn>9781424464395</isbn><isbn>1424464390</isbn><isbn>9781424464401</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkMtOwzAURI0QElDyA7DxD6RcP-MsS8SjUiU22Vc3iZ2a5oGcFNS_x0BmMzpnMYsh5J7BmjHIH5-2RblZc4istFQcsgtyyySXUksJ8pIkeWYWFhm7Jsk0fUCM4plg4oa4MqAf_NDSwZ4CdrHm7zEcJ1qdqe1sPYexxzZaP_Vp54-W9rY-4BCRYteOwc-Hnrox0Hk8hT8bgv_CbvqVtsZpjut35MpFZZOlV6R8eS6Lt3T3_rotNrvU5zCnwlVZY_IKjBIGFZeIUCtolGRKu8ZklWLojNVGaMGwkSp3VcMlBw4aZC5W5OF_1ltr95_B9xjO--UZ8QO-HVlH</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Qing Wu</creator><creator>Chun-Jiang Zhang</creator><creator>Liang Gao</creator><creator>Xinyu Li</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201009</creationdate><title>Training neural networks by electromagnetism-like mechanism algorithm for tourism arrivals forecasting</title><author>Qing Wu ; Chun-Jiang Zhang ; Liang Gao ; Xinyu Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-3fb7d89b08538a524aa0c50d54156fd87b51af8e683631ad459fbd24202060493</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological system modeling</topic><topic>Econometrical model</topic><topic>Electromagnetism-Like Mechanism</topic><topic>Forecasting</topic><topic>Industries</topic><topic>Neural network</topic><topic>Numerical models</topic><topic>Predictive models</topic><topic>Time series analysis</topic><topic>Tourism demand forecasting</topic><toplevel>online_resources</toplevel><creatorcontrib>Qing Wu</creatorcontrib><creatorcontrib>Chun-Jiang Zhang</creatorcontrib><creatorcontrib>Liang Gao</creatorcontrib><creatorcontrib>Xinyu Li</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qing Wu</au><au>Chun-Jiang Zhang</au><au>Liang Gao</au><au>Xinyu Li</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Training neural networks by electromagnetism-like mechanism algorithm for tourism arrivals forecasting</atitle><btitle>2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)</btitle><stitle>BICTA</stitle><date>2010-09</date><risdate>2010</risdate><spage>679</spage><epage>688</epage><pages>679-688</pages><isbn>9781424464371</isbn><isbn>1424464374</isbn><eisbn>1424464404</eisbn><eisbn>9781424464395</eisbn><eisbn>1424464390</eisbn><eisbn>9781424464401</eisbn><abstract>Because of accurate forecasting of tourist arrivals is very important for tourism industry, various tourist arrivals forecasting models have been developed. The aim of this paper is to introduce the basic theoretical principles of electromagnetism-like mechanism (EM) algorithm and design a new neural network model for tourism forecasting which uses the EM algorithm as the learning rule (EMNN). The EMNN is applied to two major tourism demand forecasting methods-econometrical model and time series analysis. In numerical experiment, this study tests the accuracy of EMNN model and compares the EMNN model with other traditional forecasting models, such as moving average (MV) and multiple regressions (MR). We also compares EMNN model with artificial intelligence approaches, for instance, the adaptive network-based fuzzy inference system (ANFIS) model and basic feed-forward neural networks model. Based on the experimental results, we can see that the EMNN model owns excellent performance in forecasting tourist arrivals.</abstract><pub>IEEE</pub><doi>10.1109/BICTA.2010.5645207</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424464371
ispartof 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), 2010, p.679-688
issn
language eng
recordid cdi_ieee_primary_5645207
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological system modeling
Econometrical model
Electromagnetism-Like Mechanism
Forecasting
Industries
Neural network
Numerical models
Predictive models
Time series analysis
Tourism demand forecasting
title Training neural networks by electromagnetism-like mechanism algorithm for tourism arrivals forecasting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Training%20neural%20networks%20by%20electromagnetism-like%20mechanism%20algorithm%20for%20tourism%20arrivals%20forecasting&rft.btitle=2010%20IEEE%20Fifth%20International%20Conference%20on%20Bio-Inspired%20Computing:%20Theories%20and%20Applications%20(BIC-TA)&rft.au=Qing%20Wu&rft.date=2010-09&rft.spage=679&rft.epage=688&rft.pages=679-688&rft.isbn=9781424464371&rft.isbn_list=1424464374&rft_id=info:doi/10.1109/BICTA.2010.5645207&rft_dat=%3Cieee_6IE%3E5645207%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424464404&rft.eisbn_list=9781424464395&rft.eisbn_list=1424464390&rft.eisbn_list=9781424464401&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5645207&rfr_iscdi=true