Improving binary ant colony optimization by adaptive pheromone and commutative solution update
Ant Colony Optimization (ACO) algorithm is used to simulate the decision-making processes of ant colonies as they search for food. It has been applied to many combinatorial optimization problems, especially discrete optimization. Binary ACO (BACO) is a tool for optimization of continuous functions....
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 569 |
---|---|
container_issue | |
container_start_page | 565 |
container_title | |
container_volume | |
creator | Kun Wei Hongya Tuo Zhongliang Jing |
description | Ant Colony Optimization (ACO) algorithm is used to simulate the decision-making processes of ant colonies as they search for food. It has been applied to many combinatorial optimization problems, especially discrete optimization. Binary ACO (BACO) is a tool for optimization of continuous functions. This paper proposes a novel algorithm, abbreviated to ACBACO, to improve BACO in convergence rate and searching stability. ACBACO was evaluated by using nine test functions and compared with other five optimization methods. The results show that ACBACO performs better than the five methods in optima and number of iterations. |
doi_str_mv | 10.1109/BICTA.2010.5645187 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5645187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5645187</ieee_id><sourcerecordid>5645187</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c098b84c2845228d43f018f89e13e134b6fa870d3cba4ff09ea7f3f61caf78993</originalsourceid><addsrcrecordid>eNotkN1KxDAQhSMiqGtfQG_yAl3z1ya5XIuuhQVveu2StolGmqS06cL69Ia1w8Bw5nwcmAHgEaMtxkg-v9RVs9sSlHRRsgILfgXuMSOMlYwhdg0yycWqKce3IJvnH5SqIJxiegc-azdO4WT9F2ytV9MZKh9hF4bgzzCM0Tr7q6INHrbJ6lXanDQcv_UUXPA60X2inVuiujhzGJYLvoy9ivoB3Bg1zDpb5wY0b69N9Z4fPvZ1tTvkVqKYd0iKVrCOCFYQInpGDcLCCKkxTc3a0ijBUU-7VjFjkNSKG2pK3CnDhZR0A57-Y63W-jhO1qVLjutH6B9-_1bw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improving binary ant colony optimization by adaptive pheromone and commutative solution update</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kun Wei ; Hongya Tuo ; Zhongliang Jing</creator><creatorcontrib>Kun Wei ; Hongya Tuo ; Zhongliang Jing</creatorcontrib><description>Ant Colony Optimization (ACO) algorithm is used to simulate the decision-making processes of ant colonies as they search for food. It has been applied to many combinatorial optimization problems, especially discrete optimization. Binary ACO (BACO) is a tool for optimization of continuous functions. This paper proposes a novel algorithm, abbreviated to ACBACO, to improve BACO in convergence rate and searching stability. ACBACO was evaluated by using nine test functions and compared with other five optimization methods. The results show that ACBACO performs better than the five methods in optima and number of iterations.</description><identifier>ISBN: 9781424464371</identifier><identifier>ISBN: 1424464374</identifier><identifier>EISBN: 1424464404</identifier><identifier>EISBN: 9781424464395</identifier><identifier>EISBN: 1424464390</identifier><identifier>EISBN: 9781424464401</identifier><identifier>DOI: 10.1109/BICTA.2010.5645187</identifier><language>eng</language><publisher>IEEE</publisher><subject>adaptive pheromone update ; binary ant colony optimization ; Educational institutions ; global optimum ; metaheuristic ; solution commutative update ; stable search ; Variable speed drives</subject><ispartof>2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), 2010, p.565-569</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5645187$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5645187$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kun Wei</creatorcontrib><creatorcontrib>Hongya Tuo</creatorcontrib><creatorcontrib>Zhongliang Jing</creatorcontrib><title>Improving binary ant colony optimization by adaptive pheromone and commutative solution update</title><title>2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)</title><addtitle>BICTA</addtitle><description>Ant Colony Optimization (ACO) algorithm is used to simulate the decision-making processes of ant colonies as they search for food. It has been applied to many combinatorial optimization problems, especially discrete optimization. Binary ACO (BACO) is a tool for optimization of continuous functions. This paper proposes a novel algorithm, abbreviated to ACBACO, to improve BACO in convergence rate and searching stability. ACBACO was evaluated by using nine test functions and compared with other five optimization methods. The results show that ACBACO performs better than the five methods in optima and number of iterations.</description><subject>adaptive pheromone update</subject><subject>binary ant colony optimization</subject><subject>Educational institutions</subject><subject>global optimum</subject><subject>metaheuristic</subject><subject>solution commutative update</subject><subject>stable search</subject><subject>Variable speed drives</subject><isbn>9781424464371</isbn><isbn>1424464374</isbn><isbn>1424464404</isbn><isbn>9781424464395</isbn><isbn>1424464390</isbn><isbn>9781424464401</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkN1KxDAQhSMiqGtfQG_yAl3z1ya5XIuuhQVveu2StolGmqS06cL69Ia1w8Bw5nwcmAHgEaMtxkg-v9RVs9sSlHRRsgILfgXuMSOMlYwhdg0yycWqKce3IJvnH5SqIJxiegc-azdO4WT9F2ytV9MZKh9hF4bgzzCM0Tr7q6INHrbJ6lXanDQcv_UUXPA60X2inVuiujhzGJYLvoy9ivoB3Bg1zDpb5wY0b69N9Z4fPvZ1tTvkVqKYd0iKVrCOCFYQInpGDcLCCKkxTc3a0ijBUU-7VjFjkNSKG2pK3CnDhZR0A57-Y63W-jhO1qVLjutH6B9-_1bw</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Kun Wei</creator><creator>Hongya Tuo</creator><creator>Zhongliang Jing</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201009</creationdate><title>Improving binary ant colony optimization by adaptive pheromone and commutative solution update</title><author>Kun Wei ; Hongya Tuo ; Zhongliang Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c098b84c2845228d43f018f89e13e134b6fa870d3cba4ff09ea7f3f61caf78993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>adaptive pheromone update</topic><topic>binary ant colony optimization</topic><topic>Educational institutions</topic><topic>global optimum</topic><topic>metaheuristic</topic><topic>solution commutative update</topic><topic>stable search</topic><topic>Variable speed drives</topic><toplevel>online_resources</toplevel><creatorcontrib>Kun Wei</creatorcontrib><creatorcontrib>Hongya Tuo</creatorcontrib><creatorcontrib>Zhongliang Jing</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kun Wei</au><au>Hongya Tuo</au><au>Zhongliang Jing</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improving binary ant colony optimization by adaptive pheromone and commutative solution update</atitle><btitle>2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)</btitle><stitle>BICTA</stitle><date>2010-09</date><risdate>2010</risdate><spage>565</spage><epage>569</epage><pages>565-569</pages><isbn>9781424464371</isbn><isbn>1424464374</isbn><eisbn>1424464404</eisbn><eisbn>9781424464395</eisbn><eisbn>1424464390</eisbn><eisbn>9781424464401</eisbn><abstract>Ant Colony Optimization (ACO) algorithm is used to simulate the decision-making processes of ant colonies as they search for food. It has been applied to many combinatorial optimization problems, especially discrete optimization. Binary ACO (BACO) is a tool for optimization of continuous functions. This paper proposes a novel algorithm, abbreviated to ACBACO, to improve BACO in convergence rate and searching stability. ACBACO was evaluated by using nine test functions and compared with other five optimization methods. The results show that ACBACO performs better than the five methods in optima and number of iterations.</abstract><pub>IEEE</pub><doi>10.1109/BICTA.2010.5645187</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424464371 |
ispartof | 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), 2010, p.565-569 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5645187 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | adaptive pheromone update binary ant colony optimization Educational institutions global optimum metaheuristic solution commutative update stable search Variable speed drives |
title | Improving binary ant colony optimization by adaptive pheromone and commutative solution update |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improving%20binary%20ant%20colony%20optimization%20by%20adaptive%20pheromone%20and%20commutative%20solution%20update&rft.btitle=2010%20IEEE%20Fifth%20International%20Conference%20on%20Bio-Inspired%20Computing:%20Theories%20and%20Applications%20(BIC-TA)&rft.au=Kun%20Wei&rft.date=2010-09&rft.spage=565&rft.epage=569&rft.pages=565-569&rft.isbn=9781424464371&rft.isbn_list=1424464374&rft_id=info:doi/10.1109/BICTA.2010.5645187&rft_dat=%3Cieee_6IE%3E5645187%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424464404&rft.eisbn_list=9781424464395&rft.eisbn_list=1424464390&rft.eisbn_list=9781424464401&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5645187&rfr_iscdi=true |