Improving binary ant colony optimization by adaptive pheromone and commutative solution update

Ant Colony Optimization (ACO) algorithm is used to simulate the decision-making processes of ant colonies as they search for food. It has been applied to many combinatorial optimization problems, especially discrete optimization. Binary ACO (BACO) is a tool for optimization of continuous functions....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kun Wei, Hongya Tuo, Zhongliang Jing
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 569
container_issue
container_start_page 565
container_title
container_volume
creator Kun Wei
Hongya Tuo
Zhongliang Jing
description Ant Colony Optimization (ACO) algorithm is used to simulate the decision-making processes of ant colonies as they search for food. It has been applied to many combinatorial optimization problems, especially discrete optimization. Binary ACO (BACO) is a tool for optimization of continuous functions. This paper proposes a novel algorithm, abbreviated to ACBACO, to improve BACO in convergence rate and searching stability. ACBACO was evaluated by using nine test functions and compared with other five optimization methods. The results show that ACBACO performs better than the five methods in optima and number of iterations.
doi_str_mv 10.1109/BICTA.2010.5645187
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5645187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5645187</ieee_id><sourcerecordid>5645187</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c098b84c2845228d43f018f89e13e134b6fa870d3cba4ff09ea7f3f61caf78993</originalsourceid><addsrcrecordid>eNotkN1KxDAQhSMiqGtfQG_yAl3z1ya5XIuuhQVveu2StolGmqS06cL69Ia1w8Bw5nwcmAHgEaMtxkg-v9RVs9sSlHRRsgILfgXuMSOMlYwhdg0yycWqKce3IJvnH5SqIJxiegc-azdO4WT9F2ytV9MZKh9hF4bgzzCM0Tr7q6INHrbJ6lXanDQcv_UUXPA60X2inVuiujhzGJYLvoy9ivoB3Bg1zDpb5wY0b69N9Z4fPvZ1tTvkVqKYd0iKVrCOCFYQInpGDcLCCKkxTc3a0ijBUU-7VjFjkNSKG2pK3CnDhZR0A57-Y63W-jhO1qVLjutH6B9-_1bw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improving binary ant colony optimization by adaptive pheromone and commutative solution update</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kun Wei ; Hongya Tuo ; Zhongliang Jing</creator><creatorcontrib>Kun Wei ; Hongya Tuo ; Zhongliang Jing</creatorcontrib><description>Ant Colony Optimization (ACO) algorithm is used to simulate the decision-making processes of ant colonies as they search for food. It has been applied to many combinatorial optimization problems, especially discrete optimization. Binary ACO (BACO) is a tool for optimization of continuous functions. This paper proposes a novel algorithm, abbreviated to ACBACO, to improve BACO in convergence rate and searching stability. ACBACO was evaluated by using nine test functions and compared with other five optimization methods. The results show that ACBACO performs better than the five methods in optima and number of iterations.</description><identifier>ISBN: 9781424464371</identifier><identifier>ISBN: 1424464374</identifier><identifier>EISBN: 1424464404</identifier><identifier>EISBN: 9781424464395</identifier><identifier>EISBN: 1424464390</identifier><identifier>EISBN: 9781424464401</identifier><identifier>DOI: 10.1109/BICTA.2010.5645187</identifier><language>eng</language><publisher>IEEE</publisher><subject>adaptive pheromone update ; binary ant colony optimization ; Educational institutions ; global optimum ; metaheuristic ; solution commutative update ; stable search ; Variable speed drives</subject><ispartof>2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), 2010, p.565-569</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5645187$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5645187$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kun Wei</creatorcontrib><creatorcontrib>Hongya Tuo</creatorcontrib><creatorcontrib>Zhongliang Jing</creatorcontrib><title>Improving binary ant colony optimization by adaptive pheromone and commutative solution update</title><title>2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)</title><addtitle>BICTA</addtitle><description>Ant Colony Optimization (ACO) algorithm is used to simulate the decision-making processes of ant colonies as they search for food. It has been applied to many combinatorial optimization problems, especially discrete optimization. Binary ACO (BACO) is a tool for optimization of continuous functions. This paper proposes a novel algorithm, abbreviated to ACBACO, to improve BACO in convergence rate and searching stability. ACBACO was evaluated by using nine test functions and compared with other five optimization methods. The results show that ACBACO performs better than the five methods in optima and number of iterations.</description><subject>adaptive pheromone update</subject><subject>binary ant colony optimization</subject><subject>Educational institutions</subject><subject>global optimum</subject><subject>metaheuristic</subject><subject>solution commutative update</subject><subject>stable search</subject><subject>Variable speed drives</subject><isbn>9781424464371</isbn><isbn>1424464374</isbn><isbn>1424464404</isbn><isbn>9781424464395</isbn><isbn>1424464390</isbn><isbn>9781424464401</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkN1KxDAQhSMiqGtfQG_yAl3z1ya5XIuuhQVveu2StolGmqS06cL69Ia1w8Bw5nwcmAHgEaMtxkg-v9RVs9sSlHRRsgILfgXuMSOMlYwhdg0yycWqKce3IJvnH5SqIJxiegc-azdO4WT9F2ytV9MZKh9hF4bgzzCM0Tr7q6INHrbJ6lXanDQcv_UUXPA60X2inVuiujhzGJYLvoy9ivoB3Bg1zDpb5wY0b69N9Z4fPvZ1tTvkVqKYd0iKVrCOCFYQInpGDcLCCKkxTc3a0ijBUU-7VjFjkNSKG2pK3CnDhZR0A57-Y63W-jhO1qVLjutH6B9-_1bw</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Kun Wei</creator><creator>Hongya Tuo</creator><creator>Zhongliang Jing</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201009</creationdate><title>Improving binary ant colony optimization by adaptive pheromone and commutative solution update</title><author>Kun Wei ; Hongya Tuo ; Zhongliang Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c098b84c2845228d43f018f89e13e134b6fa870d3cba4ff09ea7f3f61caf78993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>adaptive pheromone update</topic><topic>binary ant colony optimization</topic><topic>Educational institutions</topic><topic>global optimum</topic><topic>metaheuristic</topic><topic>solution commutative update</topic><topic>stable search</topic><topic>Variable speed drives</topic><toplevel>online_resources</toplevel><creatorcontrib>Kun Wei</creatorcontrib><creatorcontrib>Hongya Tuo</creatorcontrib><creatorcontrib>Zhongliang Jing</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kun Wei</au><au>Hongya Tuo</au><au>Zhongliang Jing</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improving binary ant colony optimization by adaptive pheromone and commutative solution update</atitle><btitle>2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)</btitle><stitle>BICTA</stitle><date>2010-09</date><risdate>2010</risdate><spage>565</spage><epage>569</epage><pages>565-569</pages><isbn>9781424464371</isbn><isbn>1424464374</isbn><eisbn>1424464404</eisbn><eisbn>9781424464395</eisbn><eisbn>1424464390</eisbn><eisbn>9781424464401</eisbn><abstract>Ant Colony Optimization (ACO) algorithm is used to simulate the decision-making processes of ant colonies as they search for food. It has been applied to many combinatorial optimization problems, especially discrete optimization. Binary ACO (BACO) is a tool for optimization of continuous functions. This paper proposes a novel algorithm, abbreviated to ACBACO, to improve BACO in convergence rate and searching stability. ACBACO was evaluated by using nine test functions and compared with other five optimization methods. The results show that ACBACO performs better than the five methods in optima and number of iterations.</abstract><pub>IEEE</pub><doi>10.1109/BICTA.2010.5645187</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424464371
ispartof 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), 2010, p.565-569
issn
language eng
recordid cdi_ieee_primary_5645187
source IEEE Electronic Library (IEL) Conference Proceedings
subjects adaptive pheromone update
binary ant colony optimization
Educational institutions
global optimum
metaheuristic
solution commutative update
stable search
Variable speed drives
title Improving binary ant colony optimization by adaptive pheromone and commutative solution update
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improving%20binary%20ant%20colony%20optimization%20by%20adaptive%20pheromone%20and%20commutative%20solution%20update&rft.btitle=2010%20IEEE%20Fifth%20International%20Conference%20on%20Bio-Inspired%20Computing:%20Theories%20and%20Applications%20(BIC-TA)&rft.au=Kun%20Wei&rft.date=2010-09&rft.spage=565&rft.epage=569&rft.pages=565-569&rft.isbn=9781424464371&rft.isbn_list=1424464374&rft_id=info:doi/10.1109/BICTA.2010.5645187&rft_dat=%3Cieee_6IE%3E5645187%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424464404&rft.eisbn_list=9781424464395&rft.eisbn_list=1424464390&rft.eisbn_list=9781424464401&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5645187&rfr_iscdi=true