A lightweight dynamic optimization methodology for wireless sensor networks

Technological advancements in embedded systems due to Moore's law have lead to the proliferation of wireless sensor networks (WSNs) in different application domains (e.g. defense, health care, surveillance systems) with different application requirements (e.g. lifetime, reliability). Many comme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Munir, A, Gordon-Ross, A, Lysecky, S, Lysecky, R
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue
container_start_page 129
container_title
container_volume
creator Munir, A
Gordon-Ross, A
Lysecky, S
Lysecky, R
description Technological advancements in embedded systems due to Moore's law have lead to the proliferation of wireless sensor networks (WSNs) in different application domains (e.g. defense, health care, surveillance systems) with different application requirements (e.g. lifetime, reliability). Many commercial-off-the-shelf (COTS) sensor nodes can be specialized to meet these requirements using tunable parameters (e.g. voltage, frequency) to specialize the operating state. Since a sensor node's performance depends greatly on environmental stimuli, dynamic optimizations enable sensor nodes to automatically determine their operating state in-situ. However, dynamic optimization methodology development given a large design space and resource constraints (memory and computational) is a very challenging task. In this paper, we propose a lightweight dynamic optimization methodology that intelligently selects initial tunable parameter values to produce a high-quality initial operating state in one-shot for time-critical or highly constrained applications. Further operating state improvements are made using an efficient greedy exploration algorithm, achieving optimal or near-optimal operating states while exploring only 0.04% of the design space on average.
doi_str_mv 10.1109/WIMOB.2010.5644982
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5644982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5644982</ieee_id><sourcerecordid>5644982</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ec5aa835927f975a37a9d5b2c8860d70f0fd699e7c355002ff10dcbd26b7f5223</originalsourceid><addsrcrecordid>eNpVkMtOwzAURI0AiarkB2DjH0i5fsXxslQ8Koq6AbGsnNhuDUlcxZai8PUE0Q2bGZ3N0WgQuiGwIATU3cf6dXu_oDCxKDhXJT1DmZIl4ZRzKTkpz_8xoxdoRkkBOS_L4gplMX4CAKPABOEz9LLEjd8f0mB_E5ux062vcTgm3_pvnXzocGvTIZjQhP2IXejx4Hvb2BhxtF2cuLNpCP1XvEaXTjfRZqeeo_fHh7fVc77ZPq1Xy03uiRQpt7XQumRCUemUFJpJrYyoaD0NBCPBgTOFUlbWTAgA6hwBU1eGFpV0glI2R7d_Xm-t3R173-p-3J3uYD_Ac1Kl</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A lightweight dynamic optimization methodology for wireless sensor networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Munir, A ; Gordon-Ross, A ; Lysecky, S ; Lysecky, R</creator><creatorcontrib>Munir, A ; Gordon-Ross, A ; Lysecky, S ; Lysecky, R</creatorcontrib><description>Technological advancements in embedded systems due to Moore's law have lead to the proliferation of wireless sensor networks (WSNs) in different application domains (e.g. defense, health care, surveillance systems) with different application requirements (e.g. lifetime, reliability). Many commercial-off-the-shelf (COTS) sensor nodes can be specialized to meet these requirements using tunable parameters (e.g. voltage, frequency) to specialize the operating state. Since a sensor node's performance depends greatly on environmental stimuli, dynamic optimizations enable sensor nodes to automatically determine their operating state in-situ. However, dynamic optimization methodology development given a large design space and resource constraints (memory and computational) is a very challenging task. In this paper, we propose a lightweight dynamic optimization methodology that intelligently selects initial tunable parameter values to produce a high-quality initial operating state in one-shot for time-critical or highly constrained applications. Further operating state improvements are made using an efficient greedy exploration algorithm, achieving optimal or near-optimal operating states while exploring only 0.04% of the design space on average.</description><identifier>ISSN: 2160-4886</identifier><identifier>ISBN: 9781424477432</identifier><identifier>ISBN: 1424477433</identifier><identifier>EISBN: 9781424477418</identifier><identifier>EISBN: 1424477425</identifier><identifier>EISBN: 1424477417</identifier><identifier>EISBN: 9781424477425</identifier><identifier>EISBN: 1424478030</identifier><identifier>EISBN: 9781424478033</identifier><identifier>DOI: 10.1109/WIMOB.2010.5644982</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; dynamic optimization ; Heuristic algorithms ; Measurement ; Optimization ; optimization algorithms ; Reliability ; Sensors ; Wireless sensor networks</subject><ispartof>2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications, 2010, p.129-136</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5644982$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5644982$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Munir, A</creatorcontrib><creatorcontrib>Gordon-Ross, A</creatorcontrib><creatorcontrib>Lysecky, S</creatorcontrib><creatorcontrib>Lysecky, R</creatorcontrib><title>A lightweight dynamic optimization methodology for wireless sensor networks</title><title>2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications</title><addtitle>WIMOB</addtitle><description>Technological advancements in embedded systems due to Moore's law have lead to the proliferation of wireless sensor networks (WSNs) in different application domains (e.g. defense, health care, surveillance systems) with different application requirements (e.g. lifetime, reliability). Many commercial-off-the-shelf (COTS) sensor nodes can be specialized to meet these requirements using tunable parameters (e.g. voltage, frequency) to specialize the operating state. Since a sensor node's performance depends greatly on environmental stimuli, dynamic optimizations enable sensor nodes to automatically determine their operating state in-situ. However, dynamic optimization methodology development given a large design space and resource constraints (memory and computational) is a very challenging task. In this paper, we propose a lightweight dynamic optimization methodology that intelligently selects initial tunable parameter values to produce a high-quality initial operating state in one-shot for time-critical or highly constrained applications. Further operating state improvements are made using an efficient greedy exploration algorithm, achieving optimal or near-optimal operating states while exploring only 0.04% of the design space on average.</description><subject>Algorithm design and analysis</subject><subject>dynamic optimization</subject><subject>Heuristic algorithms</subject><subject>Measurement</subject><subject>Optimization</subject><subject>optimization algorithms</subject><subject>Reliability</subject><subject>Sensors</subject><subject>Wireless sensor networks</subject><issn>2160-4886</issn><isbn>9781424477432</isbn><isbn>1424477433</isbn><isbn>9781424477418</isbn><isbn>1424477425</isbn><isbn>1424477417</isbn><isbn>9781424477425</isbn><isbn>1424478030</isbn><isbn>9781424478033</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtOwzAURI0AiarkB2DjH0i5fsXxslQ8Koq6AbGsnNhuDUlcxZai8PUE0Q2bGZ3N0WgQuiGwIATU3cf6dXu_oDCxKDhXJT1DmZIl4ZRzKTkpz_8xoxdoRkkBOS_L4gplMX4CAKPABOEz9LLEjd8f0mB_E5ux062vcTgm3_pvnXzocGvTIZjQhP2IXejx4Hvb2BhxtF2cuLNpCP1XvEaXTjfRZqeeo_fHh7fVc77ZPq1Xy03uiRQpt7XQumRCUemUFJpJrYyoaD0NBCPBgTOFUlbWTAgA6hwBU1eGFpV0glI2R7d_Xm-t3R173-p-3J3uYD_Ac1Kl</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Munir, A</creator><creator>Gordon-Ross, A</creator><creator>Lysecky, S</creator><creator>Lysecky, R</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>A lightweight dynamic optimization methodology for wireless sensor networks</title><author>Munir, A ; Gordon-Ross, A ; Lysecky, S ; Lysecky, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ec5aa835927f975a37a9d5b2c8860d70f0fd699e7c355002ff10dcbd26b7f5223</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithm design and analysis</topic><topic>dynamic optimization</topic><topic>Heuristic algorithms</topic><topic>Measurement</topic><topic>Optimization</topic><topic>optimization algorithms</topic><topic>Reliability</topic><topic>Sensors</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Munir, A</creatorcontrib><creatorcontrib>Gordon-Ross, A</creatorcontrib><creatorcontrib>Lysecky, S</creatorcontrib><creatorcontrib>Lysecky, R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Munir, A</au><au>Gordon-Ross, A</au><au>Lysecky, S</au><au>Lysecky, R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A lightweight dynamic optimization methodology for wireless sensor networks</atitle><btitle>2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications</btitle><stitle>WIMOB</stitle><date>2010-10</date><risdate>2010</risdate><spage>129</spage><epage>136</epage><pages>129-136</pages><issn>2160-4886</issn><isbn>9781424477432</isbn><isbn>1424477433</isbn><eisbn>9781424477418</eisbn><eisbn>1424477425</eisbn><eisbn>1424477417</eisbn><eisbn>9781424477425</eisbn><eisbn>1424478030</eisbn><eisbn>9781424478033</eisbn><abstract>Technological advancements in embedded systems due to Moore's law have lead to the proliferation of wireless sensor networks (WSNs) in different application domains (e.g. defense, health care, surveillance systems) with different application requirements (e.g. lifetime, reliability). Many commercial-off-the-shelf (COTS) sensor nodes can be specialized to meet these requirements using tunable parameters (e.g. voltage, frequency) to specialize the operating state. Since a sensor node's performance depends greatly on environmental stimuli, dynamic optimizations enable sensor nodes to automatically determine their operating state in-situ. However, dynamic optimization methodology development given a large design space and resource constraints (memory and computational) is a very challenging task. In this paper, we propose a lightweight dynamic optimization methodology that intelligently selects initial tunable parameter values to produce a high-quality initial operating state in one-shot for time-critical or highly constrained applications. Further operating state improvements are made using an efficient greedy exploration algorithm, achieving optimal or near-optimal operating states while exploring only 0.04% of the design space on average.</abstract><pub>IEEE</pub><doi>10.1109/WIMOB.2010.5644982</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-4886
ispartof 2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications, 2010, p.129-136
issn 2160-4886
language eng
recordid cdi_ieee_primary_5644982
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
dynamic optimization
Heuristic algorithms
Measurement
Optimization
optimization algorithms
Reliability
Sensors
Wireless sensor networks
title A lightweight dynamic optimization methodology for wireless sensor networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A50%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20lightweight%20dynamic%20optimization%20methodology%20for%20wireless%20sensor%20networks&rft.btitle=2010%20IEEE%206th%20International%20Conference%20on%20Wireless%20and%20Mobile%20Computing,%20Networking%20and%20Communications&rft.au=Munir,%20A&rft.date=2010-10&rft.spage=129&rft.epage=136&rft.pages=129-136&rft.issn=2160-4886&rft.isbn=9781424477432&rft.isbn_list=1424477433&rft_id=info:doi/10.1109/WIMOB.2010.5644982&rft_dat=%3Cieee_6IE%3E5644982%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424477418&rft.eisbn_list=1424477425&rft.eisbn_list=1424477417&rft.eisbn_list=9781424477425&rft.eisbn_list=1424478030&rft.eisbn_list=9781424478033&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5644982&rfr_iscdi=true