A lightweight dynamic optimization methodology for wireless sensor networks
Technological advancements in embedded systems due to Moore's law have lead to the proliferation of wireless sensor networks (WSNs) in different application domains (e.g. defense, health care, surveillance systems) with different application requirements (e.g. lifetime, reliability). Many comme...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 136 |
---|---|
container_issue | |
container_start_page | 129 |
container_title | |
container_volume | |
creator | Munir, A Gordon-Ross, A Lysecky, S Lysecky, R |
description | Technological advancements in embedded systems due to Moore's law have lead to the proliferation of wireless sensor networks (WSNs) in different application domains (e.g. defense, health care, surveillance systems) with different application requirements (e.g. lifetime, reliability). Many commercial-off-the-shelf (COTS) sensor nodes can be specialized to meet these requirements using tunable parameters (e.g. voltage, frequency) to specialize the operating state. Since a sensor node's performance depends greatly on environmental stimuli, dynamic optimizations enable sensor nodes to automatically determine their operating state in-situ. However, dynamic optimization methodology development given a large design space and resource constraints (memory and computational) is a very challenging task. In this paper, we propose a lightweight dynamic optimization methodology that intelligently selects initial tunable parameter values to produce a high-quality initial operating state in one-shot for time-critical or highly constrained applications. Further operating state improvements are made using an efficient greedy exploration algorithm, achieving optimal or near-optimal operating states while exploring only 0.04% of the design space on average. |
doi_str_mv | 10.1109/WIMOB.2010.5644982 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5644982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5644982</ieee_id><sourcerecordid>5644982</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ec5aa835927f975a37a9d5b2c8860d70f0fd699e7c355002ff10dcbd26b7f5223</originalsourceid><addsrcrecordid>eNpVkMtOwzAURI0AiarkB2DjH0i5fsXxslQ8Koq6AbGsnNhuDUlcxZai8PUE0Q2bGZ3N0WgQuiGwIATU3cf6dXu_oDCxKDhXJT1DmZIl4ZRzKTkpz_8xoxdoRkkBOS_L4gplMX4CAKPABOEz9LLEjd8f0mB_E5ux062vcTgm3_pvnXzocGvTIZjQhP2IXejx4Hvb2BhxtF2cuLNpCP1XvEaXTjfRZqeeo_fHh7fVc77ZPq1Xy03uiRQpt7XQumRCUemUFJpJrYyoaD0NBCPBgTOFUlbWTAgA6hwBU1eGFpV0glI2R7d_Xm-t3R173-p-3J3uYD_Ac1Kl</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A lightweight dynamic optimization methodology for wireless sensor networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Munir, A ; Gordon-Ross, A ; Lysecky, S ; Lysecky, R</creator><creatorcontrib>Munir, A ; Gordon-Ross, A ; Lysecky, S ; Lysecky, R</creatorcontrib><description>Technological advancements in embedded systems due to Moore's law have lead to the proliferation of wireless sensor networks (WSNs) in different application domains (e.g. defense, health care, surveillance systems) with different application requirements (e.g. lifetime, reliability). Many commercial-off-the-shelf (COTS) sensor nodes can be specialized to meet these requirements using tunable parameters (e.g. voltage, frequency) to specialize the operating state. Since a sensor node's performance depends greatly on environmental stimuli, dynamic optimizations enable sensor nodes to automatically determine their operating state in-situ. However, dynamic optimization methodology development given a large design space and resource constraints (memory and computational) is a very challenging task. In this paper, we propose a lightweight dynamic optimization methodology that intelligently selects initial tunable parameter values to produce a high-quality initial operating state in one-shot for time-critical or highly constrained applications. Further operating state improvements are made using an efficient greedy exploration algorithm, achieving optimal or near-optimal operating states while exploring only 0.04% of the design space on average.</description><identifier>ISSN: 2160-4886</identifier><identifier>ISBN: 9781424477432</identifier><identifier>ISBN: 1424477433</identifier><identifier>EISBN: 9781424477418</identifier><identifier>EISBN: 1424477425</identifier><identifier>EISBN: 1424477417</identifier><identifier>EISBN: 9781424477425</identifier><identifier>EISBN: 1424478030</identifier><identifier>EISBN: 9781424478033</identifier><identifier>DOI: 10.1109/WIMOB.2010.5644982</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; dynamic optimization ; Heuristic algorithms ; Measurement ; Optimization ; optimization algorithms ; Reliability ; Sensors ; Wireless sensor networks</subject><ispartof>2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications, 2010, p.129-136</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5644982$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5644982$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Munir, A</creatorcontrib><creatorcontrib>Gordon-Ross, A</creatorcontrib><creatorcontrib>Lysecky, S</creatorcontrib><creatorcontrib>Lysecky, R</creatorcontrib><title>A lightweight dynamic optimization methodology for wireless sensor networks</title><title>2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications</title><addtitle>WIMOB</addtitle><description>Technological advancements in embedded systems due to Moore's law have lead to the proliferation of wireless sensor networks (WSNs) in different application domains (e.g. defense, health care, surveillance systems) with different application requirements (e.g. lifetime, reliability). Many commercial-off-the-shelf (COTS) sensor nodes can be specialized to meet these requirements using tunable parameters (e.g. voltage, frequency) to specialize the operating state. Since a sensor node's performance depends greatly on environmental stimuli, dynamic optimizations enable sensor nodes to automatically determine their operating state in-situ. However, dynamic optimization methodology development given a large design space and resource constraints (memory and computational) is a very challenging task. In this paper, we propose a lightweight dynamic optimization methodology that intelligently selects initial tunable parameter values to produce a high-quality initial operating state in one-shot for time-critical or highly constrained applications. Further operating state improvements are made using an efficient greedy exploration algorithm, achieving optimal or near-optimal operating states while exploring only 0.04% of the design space on average.</description><subject>Algorithm design and analysis</subject><subject>dynamic optimization</subject><subject>Heuristic algorithms</subject><subject>Measurement</subject><subject>Optimization</subject><subject>optimization algorithms</subject><subject>Reliability</subject><subject>Sensors</subject><subject>Wireless sensor networks</subject><issn>2160-4886</issn><isbn>9781424477432</isbn><isbn>1424477433</isbn><isbn>9781424477418</isbn><isbn>1424477425</isbn><isbn>1424477417</isbn><isbn>9781424477425</isbn><isbn>1424478030</isbn><isbn>9781424478033</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtOwzAURI0AiarkB2DjH0i5fsXxslQ8Koq6AbGsnNhuDUlcxZai8PUE0Q2bGZ3N0WgQuiGwIATU3cf6dXu_oDCxKDhXJT1DmZIl4ZRzKTkpz_8xoxdoRkkBOS_L4gplMX4CAKPABOEz9LLEjd8f0mB_E5ux062vcTgm3_pvnXzocGvTIZjQhP2IXejx4Hvb2BhxtF2cuLNpCP1XvEaXTjfRZqeeo_fHh7fVc77ZPq1Xy03uiRQpt7XQumRCUemUFJpJrYyoaD0NBCPBgTOFUlbWTAgA6hwBU1eGFpV0glI2R7d_Xm-t3R173-p-3J3uYD_Ac1Kl</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Munir, A</creator><creator>Gordon-Ross, A</creator><creator>Lysecky, S</creator><creator>Lysecky, R</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>A lightweight dynamic optimization methodology for wireless sensor networks</title><author>Munir, A ; Gordon-Ross, A ; Lysecky, S ; Lysecky, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ec5aa835927f975a37a9d5b2c8860d70f0fd699e7c355002ff10dcbd26b7f5223</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithm design and analysis</topic><topic>dynamic optimization</topic><topic>Heuristic algorithms</topic><topic>Measurement</topic><topic>Optimization</topic><topic>optimization algorithms</topic><topic>Reliability</topic><topic>Sensors</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Munir, A</creatorcontrib><creatorcontrib>Gordon-Ross, A</creatorcontrib><creatorcontrib>Lysecky, S</creatorcontrib><creatorcontrib>Lysecky, R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Munir, A</au><au>Gordon-Ross, A</au><au>Lysecky, S</au><au>Lysecky, R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A lightweight dynamic optimization methodology for wireless sensor networks</atitle><btitle>2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications</btitle><stitle>WIMOB</stitle><date>2010-10</date><risdate>2010</risdate><spage>129</spage><epage>136</epage><pages>129-136</pages><issn>2160-4886</issn><isbn>9781424477432</isbn><isbn>1424477433</isbn><eisbn>9781424477418</eisbn><eisbn>1424477425</eisbn><eisbn>1424477417</eisbn><eisbn>9781424477425</eisbn><eisbn>1424478030</eisbn><eisbn>9781424478033</eisbn><abstract>Technological advancements in embedded systems due to Moore's law have lead to the proliferation of wireless sensor networks (WSNs) in different application domains (e.g. defense, health care, surveillance systems) with different application requirements (e.g. lifetime, reliability). Many commercial-off-the-shelf (COTS) sensor nodes can be specialized to meet these requirements using tunable parameters (e.g. voltage, frequency) to specialize the operating state. Since a sensor node's performance depends greatly on environmental stimuli, dynamic optimizations enable sensor nodes to automatically determine their operating state in-situ. However, dynamic optimization methodology development given a large design space and resource constraints (memory and computational) is a very challenging task. In this paper, we propose a lightweight dynamic optimization methodology that intelligently selects initial tunable parameter values to produce a high-quality initial operating state in one-shot for time-critical or highly constrained applications. Further operating state improvements are made using an efficient greedy exploration algorithm, achieving optimal or near-optimal operating states while exploring only 0.04% of the design space on average.</abstract><pub>IEEE</pub><doi>10.1109/WIMOB.2010.5644982</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2160-4886 |
ispartof | 2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications, 2010, p.129-136 |
issn | 2160-4886 |
language | eng |
recordid | cdi_ieee_primary_5644982 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis dynamic optimization Heuristic algorithms Measurement Optimization optimization algorithms Reliability Sensors Wireless sensor networks |
title | A lightweight dynamic optimization methodology for wireless sensor networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A50%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20lightweight%20dynamic%20optimization%20methodology%20for%20wireless%20sensor%20networks&rft.btitle=2010%20IEEE%206th%20International%20Conference%20on%20Wireless%20and%20Mobile%20Computing,%20Networking%20and%20Communications&rft.au=Munir,%20A&rft.date=2010-10&rft.spage=129&rft.epage=136&rft.pages=129-136&rft.issn=2160-4886&rft.isbn=9781424477432&rft.isbn_list=1424477433&rft_id=info:doi/10.1109/WIMOB.2010.5644982&rft_dat=%3Cieee_6IE%3E5644982%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424477418&rft.eisbn_list=1424477425&rft.eisbn_list=1424477417&rft.eisbn_list=9781424477425&rft.eisbn_list=1424478030&rft.eisbn_list=9781424478033&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5644982&rfr_iscdi=true |