A Cost-Efficient L1-L2 Multicore Interconnect: Performance, Power, and Area Considerations

Processor manufacturers use advances in manufacturing technologies to increase the number of cores on chip in order to scale performance in a cost-efficient manner. As the number of cores scales up, not all cores can be directly connected to the main memory and there is a need for hierarchy, for exa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2011-03, Vol.58 (3), p.529-538
Hauptverfasser: Golander, Amit, Levison, Nadav, Heymann, Omer, Briskman, Alexander, Wolski, Mark J, Robinson, Eric F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 538
container_issue 3
container_start_page 529
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 58
creator Golander, Amit
Levison, Nadav
Heymann, Omer
Briskman, Alexander
Wolski, Mark J
Robinson, Eric F
description Processor manufacturers use advances in manufacturing technologies to increase the number of cores on chip in order to scale performance in a cost-efficient manner. As the number of cores scales up, not all cores can be directly connected to the main memory and there is a need for hierarchy, for example, by arranging them in clusters that share L2 caches. This paper focuses on designing cost-efficient L1-L2 interconnects. We discuss performance and power- and area-consumption considerations for a real processor designed in 45-nm technology. We explain the architectures and heuristics developed, including a smart floorplan with instance flips to address interconnect latency, customized decentralized arbitration schemes tailored per transaction type, and heterogeneous Vt device assignment to reduce overall power consumption, taking into account the expected switching factors. These and other methods worked together to achieve high throughput in a power-efficient interconnect that consumes less than 3% of the compute cluster area.
doi_str_mv 10.1109/TCSI.2010.2073832
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5644727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5644727</ieee_id><sourcerecordid>1671228585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-a4f00370467f6bccaa3a9e4e714701bbcb66c7b8d502f60cb6facb0bc45d5e2b3</originalsourceid><addsrcrecordid>eNpdkE9LAzEQxRdRsFY_gHhZPHno6iSbP7veylK1ULFgvXgJ2XQCW9qkJlvEb29KiwdPM2_m94bhZdk1gXtCoH5YNO_TewpJUpBlVdKTbEA4rwqoQJzue1YXaVydZxcxrgBoDSUZZJ_jvPGxLybWdqZD1-czUsxo_rpb953xAfOp6zEY7xya_jGfY7A-bLQzOMrn_hvDKNdumY8D6nTJxW6JQfdd6i6zM6vXEa-OdZh9PE0WzUsxe3ueNuNZYSjnfaGZBSglMCGtaI3RutQ1MpSESSBta1ohjGyrJQdqBSRptWmhNYwvOdK2HGZ3h7vb4L92GHu16aLB9Vo79LuoiJCE0opXPKG3_9CV3wWXvlNpWwlW12WCyAEywccY0Kpt6DY6_CgCah-22oet9mGrY9jJc3PwdIj4x3PBmKSy_AVPdXon</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>853864993</pqid></control><display><type>article</type><title>A Cost-Efficient L1-L2 Multicore Interconnect: Performance, Power, and Area Considerations</title><source>IEEE Electronic Library (IEL)</source><creator>Golander, Amit ; Levison, Nadav ; Heymann, Omer ; Briskman, Alexander ; Wolski, Mark J ; Robinson, Eric F</creator><creatorcontrib>Golander, Amit ; Levison, Nadav ; Heymann, Omer ; Briskman, Alexander ; Wolski, Mark J ; Robinson, Eric F</creatorcontrib><description>Processor manufacturers use advances in manufacturing technologies to increase the number of cores on chip in order to scale performance in a cost-efficient manner. As the number of cores scales up, not all cores can be directly connected to the main memory and there is a need for hierarchy, for example, by arranging them in clusters that share L2 caches. This paper focuses on designing cost-efficient L1-L2 interconnects. We discuss performance and power- and area-consumption considerations for a real processor designed in 45-nm technology. We explain the architectures and heuristics developed, including a smart floorplan with instance flips to address interconnect latency, customized decentralized arbitration schemes tailored per transaction type, and heterogeneous Vt device assignment to reduce overall power consumption, taking into account the expected switching factors. These and other methods worked together to achieve high throughput in a power-efficient interconnect that consumes less than 3% of the compute cluster area.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2010.2073832</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arbitration ; Chip multiprocessor (CMP) ; Circuits ; Clocks ; Clusters ; computer architecture ; Consumption ; Hierarchies ; Integrated circuit interconnections ; interconnect architectures ; Latches ; leakage ; Metals ; Microprocessors ; multiprocessors ; power ; Power consumption ; ring ; Switches ; Switching ; Timing ; Wire</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2011-03, Vol.58 (3), p.529-538</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-a4f00370467f6bccaa3a9e4e714701bbcb66c7b8d502f60cb6facb0bc45d5e2b3</citedby><cites>FETCH-LOGICAL-c255t-a4f00370467f6bccaa3a9e4e714701bbcb66c7b8d502f60cb6facb0bc45d5e2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5644727$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5644727$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Golander, Amit</creatorcontrib><creatorcontrib>Levison, Nadav</creatorcontrib><creatorcontrib>Heymann, Omer</creatorcontrib><creatorcontrib>Briskman, Alexander</creatorcontrib><creatorcontrib>Wolski, Mark J</creatorcontrib><creatorcontrib>Robinson, Eric F</creatorcontrib><title>A Cost-Efficient L1-L2 Multicore Interconnect: Performance, Power, and Area Considerations</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>Processor manufacturers use advances in manufacturing technologies to increase the number of cores on chip in order to scale performance in a cost-efficient manner. As the number of cores scales up, not all cores can be directly connected to the main memory and there is a need for hierarchy, for example, by arranging them in clusters that share L2 caches. This paper focuses on designing cost-efficient L1-L2 interconnects. We discuss performance and power- and area-consumption considerations for a real processor designed in 45-nm technology. We explain the architectures and heuristics developed, including a smart floorplan with instance flips to address interconnect latency, customized decentralized arbitration schemes tailored per transaction type, and heterogeneous Vt device assignment to reduce overall power consumption, taking into account the expected switching factors. These and other methods worked together to achieve high throughput in a power-efficient interconnect that consumes less than 3% of the compute cluster area.</description><subject>Arbitration</subject><subject>Chip multiprocessor (CMP)</subject><subject>Circuits</subject><subject>Clocks</subject><subject>Clusters</subject><subject>computer architecture</subject><subject>Consumption</subject><subject>Hierarchies</subject><subject>Integrated circuit interconnections</subject><subject>interconnect architectures</subject><subject>Latches</subject><subject>leakage</subject><subject>Metals</subject><subject>Microprocessors</subject><subject>multiprocessors</subject><subject>power</subject><subject>Power consumption</subject><subject>ring</subject><subject>Switches</subject><subject>Switching</subject><subject>Timing</subject><subject>Wire</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE9LAzEQxRdRsFY_gHhZPHno6iSbP7veylK1ULFgvXgJ2XQCW9qkJlvEb29KiwdPM2_m94bhZdk1gXtCoH5YNO_TewpJUpBlVdKTbEA4rwqoQJzue1YXaVydZxcxrgBoDSUZZJ_jvPGxLybWdqZD1-czUsxo_rpb953xAfOp6zEY7xya_jGfY7A-bLQzOMrn_hvDKNdumY8D6nTJxW6JQfdd6i6zM6vXEa-OdZh9PE0WzUsxe3ueNuNZYSjnfaGZBSglMCGtaI3RutQ1MpSESSBta1ohjGyrJQdqBSRptWmhNYwvOdK2HGZ3h7vb4L92GHu16aLB9Vo79LuoiJCE0opXPKG3_9CV3wWXvlNpWwlW12WCyAEywccY0Kpt6DY6_CgCah-22oet9mGrY9jJc3PwdIj4x3PBmKSy_AVPdXon</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Golander, Amit</creator><creator>Levison, Nadav</creator><creator>Heymann, Omer</creator><creator>Briskman, Alexander</creator><creator>Wolski, Mark J</creator><creator>Robinson, Eric F</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201103</creationdate><title>A Cost-Efficient L1-L2 Multicore Interconnect: Performance, Power, and Area Considerations</title><author>Golander, Amit ; Levison, Nadav ; Heymann, Omer ; Briskman, Alexander ; Wolski, Mark J ; Robinson, Eric F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-a4f00370467f6bccaa3a9e4e714701bbcb66c7b8d502f60cb6facb0bc45d5e2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Arbitration</topic><topic>Chip multiprocessor (CMP)</topic><topic>Circuits</topic><topic>Clocks</topic><topic>Clusters</topic><topic>computer architecture</topic><topic>Consumption</topic><topic>Hierarchies</topic><topic>Integrated circuit interconnections</topic><topic>interconnect architectures</topic><topic>Latches</topic><topic>leakage</topic><topic>Metals</topic><topic>Microprocessors</topic><topic>multiprocessors</topic><topic>power</topic><topic>Power consumption</topic><topic>ring</topic><topic>Switches</topic><topic>Switching</topic><topic>Timing</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golander, Amit</creatorcontrib><creatorcontrib>Levison, Nadav</creatorcontrib><creatorcontrib>Heymann, Omer</creatorcontrib><creatorcontrib>Briskman, Alexander</creatorcontrib><creatorcontrib>Wolski, Mark J</creatorcontrib><creatorcontrib>Robinson, Eric F</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Golander, Amit</au><au>Levison, Nadav</au><au>Heymann, Omer</au><au>Briskman, Alexander</au><au>Wolski, Mark J</au><au>Robinson, Eric F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Cost-Efficient L1-L2 Multicore Interconnect: Performance, Power, and Area Considerations</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2011-03</date><risdate>2011</risdate><volume>58</volume><issue>3</issue><spage>529</spage><epage>538</epage><pages>529-538</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>Processor manufacturers use advances in manufacturing technologies to increase the number of cores on chip in order to scale performance in a cost-efficient manner. As the number of cores scales up, not all cores can be directly connected to the main memory and there is a need for hierarchy, for example, by arranging them in clusters that share L2 caches. This paper focuses on designing cost-efficient L1-L2 interconnects. We discuss performance and power- and area-consumption considerations for a real processor designed in 45-nm technology. We explain the architectures and heuristics developed, including a smart floorplan with instance flips to address interconnect latency, customized decentralized arbitration schemes tailored per transaction type, and heterogeneous Vt device assignment to reduce overall power consumption, taking into account the expected switching factors. These and other methods worked together to achieve high throughput in a power-efficient interconnect that consumes less than 3% of the compute cluster area.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2010.2073832</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2011-03, Vol.58 (3), p.529-538
issn 1549-8328
1558-0806
language eng
recordid cdi_ieee_primary_5644727
source IEEE Electronic Library (IEL)
subjects Arbitration
Chip multiprocessor (CMP)
Circuits
Clocks
Clusters
computer architecture
Consumption
Hierarchies
Integrated circuit interconnections
interconnect architectures
Latches
leakage
Metals
Microprocessors
multiprocessors
power
Power consumption
ring
Switches
Switching
Timing
Wire
title A Cost-Efficient L1-L2 Multicore Interconnect: Performance, Power, and Area Considerations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A26%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Cost-Efficient%20L1-L2%20Multicore%20Interconnect:%20Performance,%20Power,%20and%20Area%20Considerations&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Golander,%20Amit&rft.date=2011-03&rft.volume=58&rft.issue=3&rft.spage=529&rft.epage=538&rft.pages=529-538&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2010.2073832&rft_dat=%3Cproquest_RIE%3E1671228585%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=853864993&rft_id=info:pmid/&rft_ieee_id=5644727&rfr_iscdi=true