Determining the point of minimum error for 6DOF pose uncertainty representation
In many augmented reality applications, in particular in the medical and industrial domains, knowledge about tracking errors is important. Most current approaches characterize tracking errors by 6×6 covariance matrices that describe the uncertainty of a 6DOF pose, where the center of rotational erro...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45 |
---|---|
container_issue | |
container_start_page | 37 |
container_title | |
container_volume | |
creator | Pustka, D Willneff, J Wenisch, O Lukewille, P Achatz, K Keitler, P Klinker, G |
description | In many augmented reality applications, in particular in the medical and industrial domains, knowledge about tracking errors is important. Most current approaches characterize tracking errors by 6×6 covariance matrices that describe the uncertainty of a 6DOF pose, where the center of rotational error lies in the origin of a target coordinate system. This origin is assumed to coincide with the geometric centroid of a tracking target. In this paper, we show that, in case of a multi-camera fiducial tracking system, the geometric centroid of a body does not necessarily coincide with the point of minimum error. The latter is not fixed to a particular location, but moves, depending on the individual observations. We describe how to compute this point of minimum error given a covariance matrix and verify the validity of the approach using Monte Carlo simulations on a number of scenarios. Looking at the movement of the point of minimum error, we find that it can be located surprisingly far away from its expected position. This is further validated by an experiment using a real camera system. |
doi_str_mv | 10.1109/ISMAR.2010.5643548 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5643548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5643548</ieee_id><sourcerecordid>5643548</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1348-691f69da634bfef5e5cd3fd13ee473bc1a88ea4b09f196027731eed1f469bd703</originalsourceid><addsrcrecordid>eNo1UF1LAzEQjIigtvcH9CV_4Gpy-X4srdVC5cDqc8ndbTTi5Y5c-tB_b8S6sAyzMwzDInRHyYJSYh62-5fl66IimQvJmeD6At1SXnFuGBfiEhVG6X_OqmtUTNMXySMqpbS6QfUaEsTeBx8-cPoEPA4-JDw4_Hvrjz2GGIeIXV65rjdZnwAfQwsx2ew84QhjhAlCsskPYY6unP2eoDjjDL1vHt9Wz-WuftqulrvSU8Z1KQ110nRWMt44cAJE2zHXUQbAFWtaarUGyxtiHDWS5LKMAnTUcWmaThE2Q_d_uR4ADmP0vY2nw_kH7Ael6lDn</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Determining the point of minimum error for 6DOF pose uncertainty representation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pustka, D ; Willneff, J ; Wenisch, O ; Lukewille, P ; Achatz, K ; Keitler, P ; Klinker, G</creator><creatorcontrib>Pustka, D ; Willneff, J ; Wenisch, O ; Lukewille, P ; Achatz, K ; Keitler, P ; Klinker, G</creatorcontrib><description>In many augmented reality applications, in particular in the medical and industrial domains, knowledge about tracking errors is important. Most current approaches characterize tracking errors by 6×6 covariance matrices that describe the uncertainty of a 6DOF pose, where the center of rotational error lies in the origin of a target coordinate system. This origin is assumed to coincide with the geometric centroid of a tracking target. In this paper, we show that, in case of a multi-camera fiducial tracking system, the geometric centroid of a body does not necessarily coincide with the point of minimum error. The latter is not fixed to a particular location, but moves, depending on the individual observations. We describe how to compute this point of minimum error given a covariance matrix and verify the validity of the approach using Monte Carlo simulations on a number of scenarios. Looking at the movement of the point of minimum error, we find that it can be located surprisingly far away from its expected position. This is further validated by an experiment using a real camera system.</description><identifier>ISBN: 9781424493432</identifier><identifier>ISBN: 1424493439</identifier><identifier>EISBN: 1424493455</identifier><identifier>EISBN: 1424493463</identifier><identifier>EISBN: 9781424493463</identifier><identifier>EISBN: 9781424493456</identifier><identifier>DOI: 10.1109/ISMAR.2010.5643548</identifier><language>eng</language><publisher>IEEE</publisher><subject>and virtual realities ; augmented ; Cameras ; Covariance matrix ; Erbium ; H.5.1 [Information Interfaces and Presentation]: Multimedia Information Systems-Artificial ; I.4.8 [Image Processing and Computer Vision]: Scene Analysis-Tracking ; Jacobian matrices ; Monte Carlo methods ; Target tracking ; Uncertainty</subject><ispartof>2010 IEEE International Symposium on Mixed and Augmented Reality, 2010, p.37-45</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5643548$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5643548$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pustka, D</creatorcontrib><creatorcontrib>Willneff, J</creatorcontrib><creatorcontrib>Wenisch, O</creatorcontrib><creatorcontrib>Lukewille, P</creatorcontrib><creatorcontrib>Achatz, K</creatorcontrib><creatorcontrib>Keitler, P</creatorcontrib><creatorcontrib>Klinker, G</creatorcontrib><title>Determining the point of minimum error for 6DOF pose uncertainty representation</title><title>2010 IEEE International Symposium on Mixed and Augmented Reality</title><addtitle>ISMAR</addtitle><description>In many augmented reality applications, in particular in the medical and industrial domains, knowledge about tracking errors is important. Most current approaches characterize tracking errors by 6×6 covariance matrices that describe the uncertainty of a 6DOF pose, where the center of rotational error lies in the origin of a target coordinate system. This origin is assumed to coincide with the geometric centroid of a tracking target. In this paper, we show that, in case of a multi-camera fiducial tracking system, the geometric centroid of a body does not necessarily coincide with the point of minimum error. The latter is not fixed to a particular location, but moves, depending on the individual observations. We describe how to compute this point of minimum error given a covariance matrix and verify the validity of the approach using Monte Carlo simulations on a number of scenarios. Looking at the movement of the point of minimum error, we find that it can be located surprisingly far away from its expected position. This is further validated by an experiment using a real camera system.</description><subject>and virtual realities</subject><subject>augmented</subject><subject>Cameras</subject><subject>Covariance matrix</subject><subject>Erbium</subject><subject>H.5.1 [Information Interfaces and Presentation]: Multimedia Information Systems-Artificial</subject><subject>I.4.8 [Image Processing and Computer Vision]: Scene Analysis-Tracking</subject><subject>Jacobian matrices</subject><subject>Monte Carlo methods</subject><subject>Target tracking</subject><subject>Uncertainty</subject><isbn>9781424493432</isbn><isbn>1424493439</isbn><isbn>1424493455</isbn><isbn>1424493463</isbn><isbn>9781424493463</isbn><isbn>9781424493456</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UF1LAzEQjIigtvcH9CV_4Gpy-X4srdVC5cDqc8ndbTTi5Y5c-tB_b8S6sAyzMwzDInRHyYJSYh62-5fl66IimQvJmeD6At1SXnFuGBfiEhVG6X_OqmtUTNMXySMqpbS6QfUaEsTeBx8-cPoEPA4-JDw4_Hvrjz2GGIeIXV65rjdZnwAfQwsx2ew84QhjhAlCsskPYY6unP2eoDjjDL1vHt9Wz-WuftqulrvSU8Z1KQ110nRWMt44cAJE2zHXUQbAFWtaarUGyxtiHDWS5LKMAnTUcWmaThE2Q_d_uR4ADmP0vY2nw_kH7Ael6lDn</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Pustka, D</creator><creator>Willneff, J</creator><creator>Wenisch, O</creator><creator>Lukewille, P</creator><creator>Achatz, K</creator><creator>Keitler, P</creator><creator>Klinker, G</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>Determining the point of minimum error for 6DOF pose uncertainty representation</title><author>Pustka, D ; Willneff, J ; Wenisch, O ; Lukewille, P ; Achatz, K ; Keitler, P ; Klinker, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1348-691f69da634bfef5e5cd3fd13ee473bc1a88ea4b09f196027731eed1f469bd703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>and virtual realities</topic><topic>augmented</topic><topic>Cameras</topic><topic>Covariance matrix</topic><topic>Erbium</topic><topic>H.5.1 [Information Interfaces and Presentation]: Multimedia Information Systems-Artificial</topic><topic>I.4.8 [Image Processing and Computer Vision]: Scene Analysis-Tracking</topic><topic>Jacobian matrices</topic><topic>Monte Carlo methods</topic><topic>Target tracking</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Pustka, D</creatorcontrib><creatorcontrib>Willneff, J</creatorcontrib><creatorcontrib>Wenisch, O</creatorcontrib><creatorcontrib>Lukewille, P</creatorcontrib><creatorcontrib>Achatz, K</creatorcontrib><creatorcontrib>Keitler, P</creatorcontrib><creatorcontrib>Klinker, G</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pustka, D</au><au>Willneff, J</au><au>Wenisch, O</au><au>Lukewille, P</au><au>Achatz, K</au><au>Keitler, P</au><au>Klinker, G</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Determining the point of minimum error for 6DOF pose uncertainty representation</atitle><btitle>2010 IEEE International Symposium on Mixed and Augmented Reality</btitle><stitle>ISMAR</stitle><date>2010-10</date><risdate>2010</risdate><spage>37</spage><epage>45</epage><pages>37-45</pages><isbn>9781424493432</isbn><isbn>1424493439</isbn><eisbn>1424493455</eisbn><eisbn>1424493463</eisbn><eisbn>9781424493463</eisbn><eisbn>9781424493456</eisbn><abstract>In many augmented reality applications, in particular in the medical and industrial domains, knowledge about tracking errors is important. Most current approaches characterize tracking errors by 6×6 covariance matrices that describe the uncertainty of a 6DOF pose, where the center of rotational error lies in the origin of a target coordinate system. This origin is assumed to coincide with the geometric centroid of a tracking target. In this paper, we show that, in case of a multi-camera fiducial tracking system, the geometric centroid of a body does not necessarily coincide with the point of minimum error. The latter is not fixed to a particular location, but moves, depending on the individual observations. We describe how to compute this point of minimum error given a covariance matrix and verify the validity of the approach using Monte Carlo simulations on a number of scenarios. Looking at the movement of the point of minimum error, we find that it can be located surprisingly far away from its expected position. This is further validated by an experiment using a real camera system.</abstract><pub>IEEE</pub><doi>10.1109/ISMAR.2010.5643548</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424493432 |
ispartof | 2010 IEEE International Symposium on Mixed and Augmented Reality, 2010, p.37-45 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5643548 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | and virtual realities augmented Cameras Covariance matrix Erbium H.5.1 [Information Interfaces and Presentation]: Multimedia Information Systems-Artificial I.4.8 [Image Processing and Computer Vision]: Scene Analysis-Tracking Jacobian matrices Monte Carlo methods Target tracking Uncertainty |
title | Determining the point of minimum error for 6DOF pose uncertainty representation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A41%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Determining%20the%20point%20of%20minimum%20error%20for%206DOF%20pose%20uncertainty%20representation&rft.btitle=2010%20IEEE%20International%20Symposium%20on%20Mixed%20and%20Augmented%20Reality&rft.au=Pustka,%20D&rft.date=2010-10&rft.spage=37&rft.epage=45&rft.pages=37-45&rft.isbn=9781424493432&rft.isbn_list=1424493439&rft_id=info:doi/10.1109/ISMAR.2010.5643548&rft_dat=%3Cieee_6IE%3E5643548%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424493455&rft.eisbn_list=1424493463&rft.eisbn_list=9781424493463&rft.eisbn_list=9781424493456&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5643548&rfr_iscdi=true |