Determining the point of minimum error for 6DOF pose uncertainty representation

In many augmented reality applications, in particular in the medical and industrial domains, knowledge about tracking errors is important. Most current approaches characterize tracking errors by 6×6 covariance matrices that describe the uncertainty of a 6DOF pose, where the center of rotational erro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pustka, D, Willneff, J, Wenisch, O, Lukewille, P, Achatz, K, Keitler, P, Klinker, G
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue
container_start_page 37
container_title
container_volume
creator Pustka, D
Willneff, J
Wenisch, O
Lukewille, P
Achatz, K
Keitler, P
Klinker, G
description In many augmented reality applications, in particular in the medical and industrial domains, knowledge about tracking errors is important. Most current approaches characterize tracking errors by 6×6 covariance matrices that describe the uncertainty of a 6DOF pose, where the center of rotational error lies in the origin of a target coordinate system. This origin is assumed to coincide with the geometric centroid of a tracking target. In this paper, we show that, in case of a multi-camera fiducial tracking system, the geometric centroid of a body does not necessarily coincide with the point of minimum error. The latter is not fixed to a particular location, but moves, depending on the individual observations. We describe how to compute this point of minimum error given a covariance matrix and verify the validity of the approach using Monte Carlo simulations on a number of scenarios. Looking at the movement of the point of minimum error, we find that it can be located surprisingly far away from its expected position. This is further validated by an experiment using a real camera system.
doi_str_mv 10.1109/ISMAR.2010.5643548
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5643548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5643548</ieee_id><sourcerecordid>5643548</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1348-691f69da634bfef5e5cd3fd13ee473bc1a88ea4b09f196027731eed1f469bd703</originalsourceid><addsrcrecordid>eNo1UF1LAzEQjIigtvcH9CV_4Gpy-X4srdVC5cDqc8ndbTTi5Y5c-tB_b8S6sAyzMwzDInRHyYJSYh62-5fl66IimQvJmeD6At1SXnFuGBfiEhVG6X_OqmtUTNMXySMqpbS6QfUaEsTeBx8-cPoEPA4-JDw4_Hvrjz2GGIeIXV65rjdZnwAfQwsx2ew84QhjhAlCsskPYY6unP2eoDjjDL1vHt9Wz-WuftqulrvSU8Z1KQ110nRWMt44cAJE2zHXUQbAFWtaarUGyxtiHDWS5LKMAnTUcWmaThE2Q_d_uR4ADmP0vY2nw_kH7Ael6lDn</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Determining the point of minimum error for 6DOF pose uncertainty representation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pustka, D ; Willneff, J ; Wenisch, O ; Lukewille, P ; Achatz, K ; Keitler, P ; Klinker, G</creator><creatorcontrib>Pustka, D ; Willneff, J ; Wenisch, O ; Lukewille, P ; Achatz, K ; Keitler, P ; Klinker, G</creatorcontrib><description>In many augmented reality applications, in particular in the medical and industrial domains, knowledge about tracking errors is important. Most current approaches characterize tracking errors by 6×6 covariance matrices that describe the uncertainty of a 6DOF pose, where the center of rotational error lies in the origin of a target coordinate system. This origin is assumed to coincide with the geometric centroid of a tracking target. In this paper, we show that, in case of a multi-camera fiducial tracking system, the geometric centroid of a body does not necessarily coincide with the point of minimum error. The latter is not fixed to a particular location, but moves, depending on the individual observations. We describe how to compute this point of minimum error given a covariance matrix and verify the validity of the approach using Monte Carlo simulations on a number of scenarios. Looking at the movement of the point of minimum error, we find that it can be located surprisingly far away from its expected position. This is further validated by an experiment using a real camera system.</description><identifier>ISBN: 9781424493432</identifier><identifier>ISBN: 1424493439</identifier><identifier>EISBN: 1424493455</identifier><identifier>EISBN: 1424493463</identifier><identifier>EISBN: 9781424493463</identifier><identifier>EISBN: 9781424493456</identifier><identifier>DOI: 10.1109/ISMAR.2010.5643548</identifier><language>eng</language><publisher>IEEE</publisher><subject>and virtual realities ; augmented ; Cameras ; Covariance matrix ; Erbium ; H.5.1 [Information Interfaces and Presentation]: Multimedia Information Systems-Artificial ; I.4.8 [Image Processing and Computer Vision]: Scene Analysis-Tracking ; Jacobian matrices ; Monte Carlo methods ; Target tracking ; Uncertainty</subject><ispartof>2010 IEEE International Symposium on Mixed and Augmented Reality, 2010, p.37-45</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5643548$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5643548$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pustka, D</creatorcontrib><creatorcontrib>Willneff, J</creatorcontrib><creatorcontrib>Wenisch, O</creatorcontrib><creatorcontrib>Lukewille, P</creatorcontrib><creatorcontrib>Achatz, K</creatorcontrib><creatorcontrib>Keitler, P</creatorcontrib><creatorcontrib>Klinker, G</creatorcontrib><title>Determining the point of minimum error for 6DOF pose uncertainty representation</title><title>2010 IEEE International Symposium on Mixed and Augmented Reality</title><addtitle>ISMAR</addtitle><description>In many augmented reality applications, in particular in the medical and industrial domains, knowledge about tracking errors is important. Most current approaches characterize tracking errors by 6×6 covariance matrices that describe the uncertainty of a 6DOF pose, where the center of rotational error lies in the origin of a target coordinate system. This origin is assumed to coincide with the geometric centroid of a tracking target. In this paper, we show that, in case of a multi-camera fiducial tracking system, the geometric centroid of a body does not necessarily coincide with the point of minimum error. The latter is not fixed to a particular location, but moves, depending on the individual observations. We describe how to compute this point of minimum error given a covariance matrix and verify the validity of the approach using Monte Carlo simulations on a number of scenarios. Looking at the movement of the point of minimum error, we find that it can be located surprisingly far away from its expected position. This is further validated by an experiment using a real camera system.</description><subject>and virtual realities</subject><subject>augmented</subject><subject>Cameras</subject><subject>Covariance matrix</subject><subject>Erbium</subject><subject>H.5.1 [Information Interfaces and Presentation]: Multimedia Information Systems-Artificial</subject><subject>I.4.8 [Image Processing and Computer Vision]: Scene Analysis-Tracking</subject><subject>Jacobian matrices</subject><subject>Monte Carlo methods</subject><subject>Target tracking</subject><subject>Uncertainty</subject><isbn>9781424493432</isbn><isbn>1424493439</isbn><isbn>1424493455</isbn><isbn>1424493463</isbn><isbn>9781424493463</isbn><isbn>9781424493456</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UF1LAzEQjIigtvcH9CV_4Gpy-X4srdVC5cDqc8ndbTTi5Y5c-tB_b8S6sAyzMwzDInRHyYJSYh62-5fl66IimQvJmeD6At1SXnFuGBfiEhVG6X_OqmtUTNMXySMqpbS6QfUaEsTeBx8-cPoEPA4-JDw4_Hvrjz2GGIeIXV65rjdZnwAfQwsx2ew84QhjhAlCsskPYY6unP2eoDjjDL1vHt9Wz-WuftqulrvSU8Z1KQ110nRWMt44cAJE2zHXUQbAFWtaarUGyxtiHDWS5LKMAnTUcWmaThE2Q_d_uR4ADmP0vY2nw_kH7Ael6lDn</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Pustka, D</creator><creator>Willneff, J</creator><creator>Wenisch, O</creator><creator>Lukewille, P</creator><creator>Achatz, K</creator><creator>Keitler, P</creator><creator>Klinker, G</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201010</creationdate><title>Determining the point of minimum error for 6DOF pose uncertainty representation</title><author>Pustka, D ; Willneff, J ; Wenisch, O ; Lukewille, P ; Achatz, K ; Keitler, P ; Klinker, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1348-691f69da634bfef5e5cd3fd13ee473bc1a88ea4b09f196027731eed1f469bd703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>and virtual realities</topic><topic>augmented</topic><topic>Cameras</topic><topic>Covariance matrix</topic><topic>Erbium</topic><topic>H.5.1 [Information Interfaces and Presentation]: Multimedia Information Systems-Artificial</topic><topic>I.4.8 [Image Processing and Computer Vision]: Scene Analysis-Tracking</topic><topic>Jacobian matrices</topic><topic>Monte Carlo methods</topic><topic>Target tracking</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Pustka, D</creatorcontrib><creatorcontrib>Willneff, J</creatorcontrib><creatorcontrib>Wenisch, O</creatorcontrib><creatorcontrib>Lukewille, P</creatorcontrib><creatorcontrib>Achatz, K</creatorcontrib><creatorcontrib>Keitler, P</creatorcontrib><creatorcontrib>Klinker, G</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pustka, D</au><au>Willneff, J</au><au>Wenisch, O</au><au>Lukewille, P</au><au>Achatz, K</au><au>Keitler, P</au><au>Klinker, G</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Determining the point of minimum error for 6DOF pose uncertainty representation</atitle><btitle>2010 IEEE International Symposium on Mixed and Augmented Reality</btitle><stitle>ISMAR</stitle><date>2010-10</date><risdate>2010</risdate><spage>37</spage><epage>45</epage><pages>37-45</pages><isbn>9781424493432</isbn><isbn>1424493439</isbn><eisbn>1424493455</eisbn><eisbn>1424493463</eisbn><eisbn>9781424493463</eisbn><eisbn>9781424493456</eisbn><abstract>In many augmented reality applications, in particular in the medical and industrial domains, knowledge about tracking errors is important. Most current approaches characterize tracking errors by 6×6 covariance matrices that describe the uncertainty of a 6DOF pose, where the center of rotational error lies in the origin of a target coordinate system. This origin is assumed to coincide with the geometric centroid of a tracking target. In this paper, we show that, in case of a multi-camera fiducial tracking system, the geometric centroid of a body does not necessarily coincide with the point of minimum error. The latter is not fixed to a particular location, but moves, depending on the individual observations. We describe how to compute this point of minimum error given a covariance matrix and verify the validity of the approach using Monte Carlo simulations on a number of scenarios. Looking at the movement of the point of minimum error, we find that it can be located surprisingly far away from its expected position. This is further validated by an experiment using a real camera system.</abstract><pub>IEEE</pub><doi>10.1109/ISMAR.2010.5643548</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424493432
ispartof 2010 IEEE International Symposium on Mixed and Augmented Reality, 2010, p.37-45
issn
language eng
recordid cdi_ieee_primary_5643548
source IEEE Electronic Library (IEL) Conference Proceedings
subjects and virtual realities
augmented
Cameras
Covariance matrix
Erbium
H.5.1 [Information Interfaces and Presentation]: Multimedia Information Systems-Artificial
I.4.8 [Image Processing and Computer Vision]: Scene Analysis-Tracking
Jacobian matrices
Monte Carlo methods
Target tracking
Uncertainty
title Determining the point of minimum error for 6DOF pose uncertainty representation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A41%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Determining%20the%20point%20of%20minimum%20error%20for%206DOF%20pose%20uncertainty%20representation&rft.btitle=2010%20IEEE%20International%20Symposium%20on%20Mixed%20and%20Augmented%20Reality&rft.au=Pustka,%20D&rft.date=2010-10&rft.spage=37&rft.epage=45&rft.pages=37-45&rft.isbn=9781424493432&rft.isbn_list=1424493439&rft_id=info:doi/10.1109/ISMAR.2010.5643548&rft_dat=%3Cieee_6IE%3E5643548%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424493455&rft.eisbn_list=1424493463&rft.eisbn_list=9781424493463&rft.eisbn_list=9781424493456&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5643548&rfr_iscdi=true