Complex-valued reinforcement learning with hierarchical architecture

Hierarchical complex-valued reinforcement learning is proposed in order to solve the perceptual aliasing problem. The perceptual aliasing problem is encountered when an incomplete set of sensors is used in an actual environment, and this problem makes learning difficult for an agent. Hierarchical Q-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yamazaki, A, Hamagami, T, Shibuya, T
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1931
container_issue
container_start_page 1925
container_title
container_volume
creator Yamazaki, A
Hamagami, T
Shibuya, T
description Hierarchical complex-valued reinforcement learning is proposed in order to solve the perceptual aliasing problem. The perceptual aliasing problem is encountered when an incomplete set of sensors is used in an actual environment, and this problem makes learning difficult for an agent. Hierarchical Q-learning (HQ-learning) and complex-valued reinforcement learning are proposed in order to solve this problem. HQ-learning is a hierarchical extension of Q-learning. In HQ-learning, tasks are divided into sequences of simpler sub-tasks that can be solved by adopting memory-less policies, but a considerable amount of time is required for learning. In complex-valued reinforcement learning, the dependence of contexts can be represented by using complex-valued action-value functions. It enables the agent to adaptively perform actions, but may not deal problems because of the cycle of perceptual aliasing. In this paper, complex-valued reinforcement learning based on HQ-learning with a hierarchical design is proposed. Experimental results show the effectiveness of the proposed method.
doi_str_mv 10.1109/ICSMC.2010.5642266
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5642266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5642266</ieee_id><sourcerecordid>5642266</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-998448dccc08cd6cda7349bed323770ee1c38c58558eba065aa57f99bbd50ae83</originalsourceid><addsrcrecordid>eNo1kMlOwzAURc0kkZb-AGzyAy6enoclCgUqFbEAJHaV47wQoyStnJTh70FQVvceXeksLiHnnM05Z-5yWTzeF3PBfhi0EkLrAzJzxnIllNJgLTskmQBjKNcAR2TyP2h3TDLOtKBOiJdTMhmGN8YEU9xm5LrYdNsWP-m7b3dY5QljX29SwA77MW_Rpz72r_lHHJu8iZh8Ck0Mvs1_y4hh3CU8Iye1bwec7XNKnm8WT8UdXT3cLourFY3cwEids0rZKoTAbKh0qLyRypVYSSGNYYg8SBvAAlgsPdPgPZjaubKsgHm0ckou_rwREdfbFDufvtb7N-Q3_c5Q_g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Complex-valued reinforcement learning with hierarchical architecture</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yamazaki, A ; Hamagami, T ; Shibuya, T</creator><creatorcontrib>Yamazaki, A ; Hamagami, T ; Shibuya, T</creatorcontrib><description>Hierarchical complex-valued reinforcement learning is proposed in order to solve the perceptual aliasing problem. The perceptual aliasing problem is encountered when an incomplete set of sensors is used in an actual environment, and this problem makes learning difficult for an agent. Hierarchical Q-learning (HQ-learning) and complex-valued reinforcement learning are proposed in order to solve this problem. HQ-learning is a hierarchical extension of Q-learning. In HQ-learning, tasks are divided into sequences of simpler sub-tasks that can be solved by adopting memory-less policies, but a considerable amount of time is required for learning. In complex-valued reinforcement learning, the dependence of contexts can be represented by using complex-valued action-value functions. It enables the agent to adaptively perform actions, but may not deal problems because of the cycle of perceptual aliasing. In this paper, complex-valued reinforcement learning based on HQ-learning with a hierarchical design is proposed. Experimental results show the effectiveness of the proposed method.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 1424465869</identifier><identifier>ISBN: 9781424465866</identifier><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 9781424465880</identifier><identifier>EISBN: 1424465877</identifier><identifier>EISBN: 1424465885</identifier><identifier>EISBN: 9781424465873</identifier><identifier>DOI: 10.1109/ICSMC.2010.5642266</identifier><language>eng</language><publisher>IEEE</publisher><subject>perceptual aliasing problem ; reinforcement learning ; Switches</subject><ispartof>2010 IEEE International Conference on Systems, Man and Cybernetics, 2010, p.1925-1931</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5642266$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5642266$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yamazaki, A</creatorcontrib><creatorcontrib>Hamagami, T</creatorcontrib><creatorcontrib>Shibuya, T</creatorcontrib><title>Complex-valued reinforcement learning with hierarchical architecture</title><title>2010 IEEE International Conference on Systems, Man and Cybernetics</title><addtitle>ICSMC</addtitle><description>Hierarchical complex-valued reinforcement learning is proposed in order to solve the perceptual aliasing problem. The perceptual aliasing problem is encountered when an incomplete set of sensors is used in an actual environment, and this problem makes learning difficult for an agent. Hierarchical Q-learning (HQ-learning) and complex-valued reinforcement learning are proposed in order to solve this problem. HQ-learning is a hierarchical extension of Q-learning. In HQ-learning, tasks are divided into sequences of simpler sub-tasks that can be solved by adopting memory-less policies, but a considerable amount of time is required for learning. In complex-valued reinforcement learning, the dependence of contexts can be represented by using complex-valued action-value functions. It enables the agent to adaptively perform actions, but may not deal problems because of the cycle of perceptual aliasing. In this paper, complex-valued reinforcement learning based on HQ-learning with a hierarchical design is proposed. Experimental results show the effectiveness of the proposed method.</description><subject>perceptual aliasing problem</subject><subject>reinforcement learning</subject><subject>Switches</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>1424465869</isbn><isbn>9781424465866</isbn><isbn>9781424465880</isbn><isbn>1424465877</isbn><isbn>1424465885</isbn><isbn>9781424465873</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMlOwzAURc0kkZb-AGzyAy6enoclCgUqFbEAJHaV47wQoyStnJTh70FQVvceXeksLiHnnM05Z-5yWTzeF3PBfhi0EkLrAzJzxnIllNJgLTskmQBjKNcAR2TyP2h3TDLOtKBOiJdTMhmGN8YEU9xm5LrYdNsWP-m7b3dY5QljX29SwA77MW_Rpz72r_lHHJu8iZh8Ck0Mvs1_y4hh3CU8Iye1bwec7XNKnm8WT8UdXT3cLourFY3cwEids0rZKoTAbKh0qLyRypVYSSGNYYg8SBvAAlgsPdPgPZjaubKsgHm0ckou_rwREdfbFDufvtb7N-Q3_c5Q_g</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Yamazaki, A</creator><creator>Hamagami, T</creator><creator>Shibuya, T</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201010</creationdate><title>Complex-valued reinforcement learning with hierarchical architecture</title><author>Yamazaki, A ; Hamagami, T ; Shibuya, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-998448dccc08cd6cda7349bed323770ee1c38c58558eba065aa57f99bbd50ae83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>perceptual aliasing problem</topic><topic>reinforcement learning</topic><topic>Switches</topic><toplevel>online_resources</toplevel><creatorcontrib>Yamazaki, A</creatorcontrib><creatorcontrib>Hamagami, T</creatorcontrib><creatorcontrib>Shibuya, T</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yamazaki, A</au><au>Hamagami, T</au><au>Shibuya, T</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Complex-valued reinforcement learning with hierarchical architecture</atitle><btitle>2010 IEEE International Conference on Systems, Man and Cybernetics</btitle><stitle>ICSMC</stitle><date>2010-10</date><risdate>2010</risdate><spage>1925</spage><epage>1931</epage><pages>1925-1931</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>1424465869</isbn><isbn>9781424465866</isbn><eisbn>9781424465880</eisbn><eisbn>1424465877</eisbn><eisbn>1424465885</eisbn><eisbn>9781424465873</eisbn><abstract>Hierarchical complex-valued reinforcement learning is proposed in order to solve the perceptual aliasing problem. The perceptual aliasing problem is encountered when an incomplete set of sensors is used in an actual environment, and this problem makes learning difficult for an agent. Hierarchical Q-learning (HQ-learning) and complex-valued reinforcement learning are proposed in order to solve this problem. HQ-learning is a hierarchical extension of Q-learning. In HQ-learning, tasks are divided into sequences of simpler sub-tasks that can be solved by adopting memory-less policies, but a considerable amount of time is required for learning. In complex-valued reinforcement learning, the dependence of contexts can be represented by using complex-valued action-value functions. It enables the agent to adaptively perform actions, but may not deal problems because of the cycle of perceptual aliasing. In this paper, complex-valued reinforcement learning based on HQ-learning with a hierarchical design is proposed. Experimental results show the effectiveness of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2010.5642266</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1062-922X
ispartof 2010 IEEE International Conference on Systems, Man and Cybernetics, 2010, p.1925-1931
issn 1062-922X
2577-1655
language eng
recordid cdi_ieee_primary_5642266
source IEEE Electronic Library (IEL) Conference Proceedings
subjects perceptual aliasing problem
reinforcement learning
Switches
title Complex-valued reinforcement learning with hierarchical architecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A06%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Complex-valued%20reinforcement%20learning%20with%20hierarchical%20architecture&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics&rft.au=Yamazaki,%20A&rft.date=2010-10&rft.spage=1925&rft.epage=1931&rft.pages=1925-1931&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=1424465869&rft.isbn_list=9781424465866&rft_id=info:doi/10.1109/ICSMC.2010.5642266&rft_dat=%3Cieee_6IE%3E5642266%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424465880&rft.eisbn_list=1424465877&rft.eisbn_list=1424465885&rft.eisbn_list=9781424465873&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5642266&rfr_iscdi=true